9 research outputs found

    HER2-based recombinant immunogen to target DCs through FcγRs for cancer immunotherapy

    Get PDF
    Dendritic cell (DC)-based immunotherapy is an attractive approach to induce long lasting antitumor effector cells aiming to control cancer progression. DC targeting is a critical step in the design of DC vaccines in order to optimize delivery and processing of the antigen, and several receptors have been characterized for this purpose. In this study, we employed the FcγRs to target DCs both in vitro and in vivo. We designed a recombinant molecule (HER2-Fc) composed of the immunogenic sequence of the human tumor-associated antigen HER2 (aa 364–391) and the Fc domain of a human IgG1. In a mouse model, HER2-Fc cDNA vaccination activated significant T cell-mediated immune responses towards HER2 peptide epitopes as detected by IFN-γ ELIspot and induced longer tumor latency as compared to Ctrl-Fc-vaccinated control mice. Human in vitro studies indicated that the recombinant HER2-Fc immunogen efficiently targeted human DCs through the FcγRs resulting in protein cross-processing and in the activation of autologous HER2-specific CD8+ T cells from breast cancer patients

    Potency testing of mesenchymal stromal cell growth expanded in human platelet lysate from different human tissues

    No full text
    Mesenchymal stromal cells (MSCs) have been largely investigated, in the past decade, as potential therapeutic strategies for various acute and chronic pathological conditions. MSCs isolated from different sources, such as bone marrow (BM), umbilical cord tissue (UCT) and adipose tissue (AT), share many biological features, although they may show some differences on cumulative yield, proliferative ability and differentiation potential. The standardization of MSCs growth and their functional amplification is a mandatory objective of cell therapies. The aim of this study was to evaluate the cumulative yield and the ex vivo amplification potential of MSCs obtained from various sources and different subjects, using defined culture conditions with a standardized platelet lysate (PL) as growth stimulus

    Targeting of macrophage galactose-type C-type lectin (MGL) induces DC signaling and activation

    No full text
    Dendritic cells (DCs) sense the microenvironment through several types of receptors recognizing pathogen-associated molecular patterns. In particular, C-type lectins, expressed by distinct subsets of DCs, recognize and internalize specific carbohydrate antigen in a Ca2+-dependent manner. Targeting of these receptors is becoming an efficient strategy of delivering antigens in DC-based anticancer immunotherapy. Here we investigated the role of the macrophage galactose type C-lectin receptor (MGL), expressed by immature DCs (iDCs), as a molecular target for a-N-acetylgalactosamine (GalNAc or Tn)-carrying tumor-associated antigens to improve DC performance. MGL expressed by ex vivo-generated iDCs from healthy donors was engaged by a 60-mer MUC19Tn-glycopeptide as a Tn-carrying tumor-associated antigen, and an anti-MGL antibody, as a specific MGL binder. We demonstrated that MGL engagement induced homotrimers and homodimers, triggering the phosphorylation of extracellular signal-regulated kinase 1,2 (ERK1,2) and nuclear factor-?B activation. Analysis of DC phenotype and function demonstrated that MGL engagement improved DC performance as antigen-presenting cells, promoting the upregulation of maturation markers, a decrease in phagocytosis, an enhancement of motility, and most importantly an increase in antigen-specific CD8+ T-cell activation. These results demonstrate that the targeting of MGL receptor on human DCs has an adjuvant effect and that this strategy can be used to design novel anticancer vaccines

    Immunohistochemical Characterization of Immune Infiltrate in Tumor Microenvironment of Glioblastoma

    No full text
    Background: Glioblastoma (GBM) is the most common primary malignant brain cancer in adults, with very limited therapeutic options. It is characterized by a severe immunosuppressive milieu mostly triggered by suppressive CD163+ tumor-associated macrophages (TAMs). The efficacy of immune checkpoint inhibitor interventions aimed at rescuing anti-tumor immunity has not been proved to date. Thus, it is critically important to investigate the immunomodulatory mechanisms acting within the GBM microenvironment for the better design of immunotherapeutic strategies. Methods: The immunohistochemical analysis of a panel of immune biomarkers (CD3, FoxP3, CD163, IDO, PDL-1, PD-1 and TIGIT) was performed in paired samples of the tumor core (TC) and peritumoral area (PTA) of nine GBM patients. Results: CD163+ cells were the most common cell type in both the PTA and TC. IDO and PDL-1 were expressed in most of the TC samples, frequently accompanied by TIGIT expression; on the contrary, they were almost absent in the PTA. CD3+ cells were present in both the TC and PTA, to a lesser extent than CD163+ cells; they often were accompanied by PD-1 expression, especially in the TC. FoxP3 was scarcely present. Conclusion: Distinct inhibitory mechanisms can act simultaneously in both the TC and PTA to contribute to the strong immunosuppression observed within the GBM microenvironment. Nevertheless, the PTA shows strongly reduced immunosuppression when compared to the TC, thus representing a potential target for immunotherapies. Moreover, our results support the working hypothesis that immunosuppression and T-cell exhaustion can be simultaneously targeted to rescue anti-tumor immunity in GBM patients
    corecore