15 research outputs found

    A Novel Method for Lithium-Ion Battery Online Parameter Identification Based on Variable Forgetting Factor Recursive Least Squares

    No full text
    For model-based state of charge (SOC) estimation methods, the battery model parameters change with temperature, SOC, and so forth, causing the estimation error to increase. Constantly updating model parameters during battery operation, also known as online parameter identification, can effectively solve this problem. In this paper, a lithium-ion battery is modeled using the Thevenin model. A variable forgetting factor (VFF) strategy is introduced to improve forgetting factor recursive least squares (FFRLS) to variable forgetting factor recursive least squares (VFF-RLS). A novel method based on VFF-RLS for the online identification of the Thevenin model is proposed. Experiments verified that VFF-RLS gives more stable online parameter identification results than FFRLS. Combined with an unscented Kalman filter (UKF) algorithm, a joint algorithm named VFF-RLS-UKF is proposed for SOC estimation. In a variable-temperature environment, a battery SOC estimation experiment was performed using the joint algorithm. The average error of the SOC estimation was as low as 0.595% in some experiments. Experiments showed that VFF-RLS can effectively track the changes in model parameters. The joint algorithm improved the SOC estimation accuracy compared to the method with the fixed forgetting factor

    Optimal Design and Testing of the Driving Coil on Induction Coilgun

    No full text

    Structural Design of Armature With Interference at Both Ends and Analysis of Its Launching Performance

    No full text

    Strong Tracking of a H-Infinity Filter in Lithium-Ion Battery State of Charge Estimation

    No full text
    The accuracy of state-of-charge (SOC) estimation, one of the most important functions of a battery management system (BMS), is the basis for the proper operation of an electric vehicle. This study proposes a method for accurate SOC estimation. To achieve a balance between accuracy and simplicity, a second-order resistor–capacitor equivalent circuit model is applied before the algorithm is deduced, and the parameters of the established model are determined using a fitting technique. Battery state space equations are then described. A strong tracking H-infinity filter (STHF) is proposed based on an H-infinity filter (HF) and a strong tracking filter. By introducing a suboptimal fading factor, the STHF approach can use the relevant information in the estimation residual sequence to update the estimation results. To verify the robustness of this approach, battery test experiments are performed at different temperatures on lithium-ion batteries. Finally, the SOC estimation results obtained using the STHF suggest that the STHF method exhibits high robustness against the measured noises and initial error. For comparison, the estimation results of the commonly used extended Kalman filter (EKF) and HF methods are also displayed. It is suggested that the proposed STHF approach obtains a more accurate SOC estimation

    A Comparative Study of Three Improved Algorithms Based on Particle Filter Algorithms in SOC Estimation of Lithium Ion Batteries

    No full text
    The state of charge (SOC) is an important parameter for batteries, especially those for electric vehicles. Since SOC cannot be obtained directly by measurement, SOC estimation methods are required. In this paper, three model-based methods, including the extended particle filter (EPF), cubature particle filter (CPF), and unscented particle filter (UPF), are compared in terms of complexity, accuracy, and robustness. The second-order resistor-capacitor (RC) equivalent circuit model is selected as the circuit model of the lithium-ion battery, and the parameters of the model are obtained by off-line identification. Then, the City test is applied to compare the performance of the methods. The experimental results show that the EPF method exhibits low complexity and fast running speed, but poor accuracy and robustness. Compared with the EPF method, the complexity of the CPF and UPF methods is relatively high, but these models offer improved accuracy and robustness

    A Novel Intelligent Method for the State of Charge Estimation of Lithium-Ion Batteries Using a Discrete Wavelet Transform-Based Wavelet Neural Network

    No full text
    State of charge (SOC) estimation is becoming increasingly important, along with electric vehicle (EV) rapid development, while SOC is one of the most significant parameters for the battery management system, indicating remaining energy and ensuring the safety and reliability of EV. In this paper, a hybrid wavelet neural network (WNN) model combining the discrete wavelet transform (DWT) method and adaptive WNN is proposed to estimate the SOC of lithium-ion batteries. The WNN model is trained by Levenberg-Marquardt (L-M) algorithm, whose inputs are processed by discrete wavelet decomposition and reconstitution. Compared with back-propagation neural network (BPNN), L-M based BPNN (LMBPNN), L-M based WNN (LMWNN), DWT with L-M based BPNN (DWTLMBPNN) and extend Kalman filter (EKF), the proposed intelligent SOC estimation method is validated and proved to be effective. Under the New European Driving Cycle (NEDC), the mean absolute error and maximum error can be reduced to 0.59% and 3.13%, respectively. The characteristics of high accuracy and strong robustness of the proposed method are verified by comparison study and robustness evaluation results (e.g., measurement noise test and untrained driving cycle test)

    High-order-mode Brillouin random fiber laser based on distributed Rayleigh scattering in all-few mode fiber half-open cavity

    No full text
    A high-order-mode (HOM) Brillouin random fiber laser (BRFL) based on distributed Rayleigh scattering in an all-few-mode fiber random cavity is proposed and experimentally demonstrated. Compared to traditional BRFLs oscillating in the single-mode-fiber cavity, the few-mode-fiber random cavity allows the high-order spatial mode Stokes beams to be activated and amplified via intra-mode stimulated Brillouin scattering for sufficient gain. Besides random feedback of distributed Rayleigh scattering along few-mode fibers, a few-mode fiber Bragg grating (FM-FBG) is employed to provide the one-end transverse mode-dependent reflection, which facilitates a high-purity oscillating random laser mode switchable between LP01 and LP11 mode by readily tunning the working wavelength of the Brillouin pump. Consequently, the all few-mode fiber-based BRFL emits a 600-Hz narrow-linewidth LP11 mode with a high mode purity of ∼91.3 %, which paves the way for spatial multiplexing coherent communication, high-resolution imaging, highly sensitive sensing, etc
    corecore