896 research outputs found

    Single channel based interference-free and self-powered human-machine interactive interface using eigenfrequency-dominant mechanism

    Full text link
    The recent development of wearable devices is revolutionizing the way of human-machine interaction (HMI). Nowadays, an interactive interface that carries more embedded information is desired to fulfil the increasing demand in era of Internet of Things. However, present approach normally relies on sensor arrays for memory expansion, which inevitably brings the concern of wiring complexity, signal differentiation, power consumption, and miniaturization. Herein, a one-channel based self-powered HMI interface, which uses the eigenfrequency of magnetized micropillar (MMP) as identification mechanism, is reported. When manually vibrated, the inherent recovery of the MMP caused a damped oscillation that generates current signals because of Faraday's Law of induction. The time-to-frequency conversion explores the MMP-related eigenfrequency, which provides a specific solution to allocate diverse commands in an interference-free behavior even with one electric channel. A cylindrical cantilever model was built to regulate the MMP eigenfrequencies via precisely designing the dimensional parameters and material properties. We show that using one device and two electrodes, high-capacity HMI interface can be realized when the MMPs with different eigenfrequencies have been integrated. This study provides the reference value to design the future HMI system especially for situations that require a more intuitive and intelligent communication experience with high-memory demand.Comment: 35 pages, 6 figure

    Insights into the genetic influences of the microbiota on the life span of a host

    Get PDF
    Escherichia coli (E. coli) mutant strains have been reported to extend the life span of Caenorhabditis elegans (C. elegans). However, the specific mechanisms through which the genes and pathways affect aging are not yet clear. In this study, we fed Drosophila melanogaster (fruit fly) various E. coli single-gene knockout strains to screen mutant strains with an extended lifespan. The results showed that D. melanogaster fed with E. coli purE had the longest mean lifespan, which was verified by C. elegans. We conducted RNA-sequencing and analysis of C. elegans fed with E. coli purE (a single-gene knockout mutant) to further explore the underlying molecular mechanism. We used differential gene expression (DGE) analysis, enrichment analysis, and gene set enrichment analysis (GSEA) to screen vital genes and modules with significant changes in overall expression. Our results suggest that E. coli mutant strains may affect the host lifespan by regulating the protein synthesis rate (cfz-2) and ATP level (catp-4). To conclude, our study could provide new insights into the genetic influences of the microbiota on the life span of a host and a basis for developing anti-aging probiotics and drugs

    Search for the decay J/ψγ+invisibleJ/\psi\to\gamma + \rm {invisible}

    Full text link
    We search for J/ψJ/\psi radiative decays into a weakly interacting neutral particle, namely an invisible particle, using the J/ψJ/\psi produced through the process ψ(3686)π+πJ/ψ\psi(3686)\to\pi^+\pi^-J/\psi in a data sample of (448.1±2.9)×106(448.1\pm2.9)\times 10^6 ψ(3686)\psi(3686) decays collected by the BESIII detector at BEPCII. No significant signal is observed. Using a modified frequentist method, upper limits on the branching fractions are set under different assumptions of invisible particle masses up to 1.2  GeV/c2\mathrm{\ Ge\kern -0.1em V}/c^2. The upper limit corresponding to an invisible particle with zero mass is 7.0×107\times 10^{-7} at the 90\% confidence level

    Measurement of the cross section of e+eΞΞˉ+e^+e^-\rightarrow\Xi^{-}\bar\Xi^{+} at center-of-mass energies between 3.510 and 4.843 GeV

    Full text link
    Using e+ee^+e^- collision data corresponding to a total integrated luminosity of 12.9 fb1fb^{-1} collected with the BESIII detector at the BEPCII collider, the exclusive Born cross sections and the effective form factors of the reaction e+eΞΞˉ+e^+e^-\rightarrow\Xi^{-}\bar\Xi^{+} are measured via the single baryon-tag method at 23 center-of-mass energies between 3.510 and 4.843 GeV. Evidence for the decay ψ(3770)ΞΞˉ+\psi(3770)\rightarrow\Xi^{-}\bar\Xi^{+} is observed with a significance of 4.5σ\sigma by analyzing the measured cross sections together with earlier BESIII results. For the other charmonium(-like) states ψ(4040)\psi(4040), ψ(4160)\psi(4160), Y(4230)Y(4230), Y(4360)Y(4360), ψ(4415)\psi(4415), and Y(4660)Y(4660), no significant signal of their decay to ΞΞˉ+\Xi^-\bar \Xi^+ is found. For these states, upper limits of the products of the branching fraction and the electronic partial width at the 90% confidence level are provided.Comment: 18 pages, 10 pages, 4 table

    First Observation of a Three-Resonance Structure in e+ee^+e^-\rightarrow{non-open} Charm Hadrons

    Full text link
    We report the measurement of the cross sections for e+ee^+e^-\rightarrow{nOCH} (nOCH stands for non-open charm hadrons) with improved precision at center-of-mass energies from 3.645 to 3.871 GeV. We observe for the first time a three-resonance structure in the energy-dependent lineshape of the cross sections, which are R(3760)\mathcal R(3760), R(3780)\mathcal R(3780) and R(3810)\mathcal R(3810) with significances of 9.4σ9.4\sigma, 15.7σ15.7\sigma, and 9.8σ9.8\sigma, respectively. The R(3810)\mathcal R(3810) is observed for the first time. We found two solutions in analysis of the cross sections. For solution I [solution II], we measure the mass, the total width and the product of electronic width and nOCH decay branching fraction to be (3805.8±1.1±2.7)(3805.8 \pm 1.1 \pm 2.7) [(3805.8±1.1±2.7)(3805.8 \pm 1.1 \pm 2.7)] MeV/c2c^2, (11.6±2.6±1.9)(11.6 \pm 2.6 \pm 1.9) [(11.5±2.5±1.8)(11.5 \pm 2.5 \pm 1.8)] MeV, and (10.8±3.2±2.3)(10.8\pm 3.2\pm 2.3) [(11.0±2.9±2.4)(11.0\pm 2.9\pm 2.4)] eV for the R(3810)\mathcal R(3810), respectively. In addition, we measure the branching fractions B(R(3760){\mathcal B}({\mathcal R}(3760)\rightarrow{nOCH})=(24.5±13.4±27.4)%[(6.8±5.4±7.6)%])=(24.5 \pm 13.4 \pm 27.4)\% [(6.8 \pm 5.4 \pm 7.6)\%] for the first time, and B(R(3780){\mathcal B}(\mathcal R(3780)\rightarrow{nOCH})=(11.6±5.8±7.8)%[(10.3±4.5±6.9)%])=(11.6 \pm 5.8 \pm 7.8)\% [(10.3 \pm 4.5 \pm 6.9)\%]. Moreover, we determine the open-charm (OC) branching fraction B(R{\mathcal B}({\mathcal R}(3760)(3760)\rightarrow{OC})=(75.5±13.4±27.4)%[(93.2±5.4±7.6)%])=(75.5 \pm 13.4 \pm 27.4)\% [(93.2 \pm 5.4 \pm 7.6)\%], which supports the interpretation of R(3760)\mathcal R(3760) as an OC pair molecular state, but contained a simple four-quark state component. The first uncertainties are from fits to the cross sections, and the second are systematic

    Amplitude analysis and branching fraction measurement of the decay D+KS0π+π0π0D^{+} \to K_S^0\pi^+\pi^0\pi^0

    Full text link
    Using 2.93 fb1\rm{fb}^{-1} of e+ee^+e^- collision data collected with the BESIII detector at the center-of-mass energy 3.773\,GeV, we perform the first amplitude analysis of the decay D+KS0π+π0π0D^+\to K_S^0\pi^+\pi^0\pi^0 and determine the relative magnitudes and phases of different intermediate processes. The absolute branching fraction of D+KS0π+π0π0D^+\to K_S^0\pi^+\pi^0\pi^0 is measured to be (2.888±0.058stat.±0.069syst.)%(2.888\pm0.058_{\rm stat.}\pm0.069_{\rm syst.})\%. The dominant intermediate processes are D+KS0a1(1260)+(ρ+π0)D^+\to K_S^0a_1(1260)^+(\to \rho^+\pi^0) and D+Kˉ0ρ+D^+\to \bar{K}^{*0}\rho^+, with branching fractions of (8.66±1.04stat.±1.39syst.) ⁣× ⁣103(8.66\pm1.04_{\rm stat.}\pm1.39_{\rm syst.})\!\times \!10^{-3} and (9.70±0.81stat.±0.53syst.) ⁣× ⁣103(9.70\pm0.81_{\rm stat.}\pm0.53_{\rm syst.})\!\times \!10^{-3}, respectively

    Study of the doubly Cabibbo-suppressed decays Ds+K+K+πD^+_s\to K^+K^+\pi^- and Ds+K+K+ππ0D^+_s\to K^+K^+\pi^-\pi^0

    Full text link
    Based on 7.33 fb1^{-1} of e+ee^+e^- collision data collected at center-of-mass energies between 4.128 and 4.226 GeV with the BESIII detector, the experimental studies of the doubly Cabibbo-suppressed decays Ds+K+K+πD^+_s\to K^+K^+\pi^- and Ds+K+K+ππ0D^+_s\to K^+K^+\pi^-\pi^0 are reported. We determine the absolute branching fraction of Ds+K+K+πD^+_s\to K^+K^+\pi^- to be (1.230.25+0.28(stat)±0.06(syst){1.23^{+0.28}_{-0.25}}({\rm stat})\pm0.06({\rm syst})) ×104\times 10^{-4}. No significant signal of Ds+K+K+ππ0D^+_s\to K^+K^+\pi^-\pi^0 is observed and the upper limit on its decay branching fraction at 90\% confidence level is set to be 1.7×1041.7\times10^{-4}.Comment: 10 pages, 4 figures, 4 table
    corecore