119 research outputs found

    Dynamic Hybrid Beamforming Design for Dual-Function Radar-Communication Systems

    Full text link
    This paper investigates dynamic hybrid beamforming (HBF) for a dual-function radar-communication (DFRC) system, where the DFRC base station (BS) simultaneously serves multiple single-antenna users and senses a target in the presence of multiple clutters. Particularly, we apply a HBF architecture with dynamic subarrays and double phase shifters in the DFRC BS. Aiming at maximizing the radar mutual information, we consider jointly designing the dynamic HBF of the DFRC system, subject to the constraints of communication quality of service (QoS), transmit power, and analog beamformer. To solve the complicated non-convex optimization, an efficient alternating optimization algorithm based on the majorization-minimization methods is developed. Simulation results verify the advancement of the considered HBF architecture and the effectiveness of the proposed design method

    Benzyl alcohol oxidation using in situ generated hydrogen peroxide from hydrogen and oxygen

    Get PDF
    This thesis sets out an introduction to catalysis, particularly heterogeneous gold catalysis, the development of direct synthesis of hydrogen peroxide and benzyl alcohol oxidation by supported bimetallic gold-palladium catalysts. In addition the possibility of combining those two processes together to carry out the benzyl alcohol oxidation using in situ generated hydrogen peroxide. The experimental chapter shows the detailed operation of preparing and testing of catalysts in particular for the reactions studied(H2O2formation, CO oxidation and benzyl alcohol oxidation). In the results and discussion section, some basic knowledge of gold and palladium catalysis is reviewed including some popular preparation methods, the operation of the reactors, and testing in both direct synthesis of hydrogen peroxide and low-temperature CO oxidation. Afterwards, results of gold-palladium catalysis in the oxidation of benzyl alcohol using a mixture of hydrogen and oxygen are shown. In detail, some improvements for the reaction conditions, including temperature and duration, and catalysts, including gold and palladium ratios in alloys and the effect of preparation methods are discussed. In conclusion, higher reaction temperature (75oC) and longer reaction time (2 hours) seemed to be beneficial to converting benzyl alcohol to benzaldehyde by in situ generatedH2O2. Moreover, sol-immobilized1 wt% Au-Pd/TiO2with gold palladium ratio of 1:1 achieved the highest benzyl alcohol conversion and benzaldehyde selectivity among all samples with different metal ratios by different preparation methods

    GREASE: A Generative Model for Relevance Search over Knowledge Graphs

    Get PDF
    Relevance search is to find top-ranked entities in a knowledge graph (KG) that are relevant to a query entity. Relevance is ambiguous, particularly over a schema-rich KG like DBpedia which supports a wide range of different semantics of relevance based on numerous types of relations and attributes. As users may lack the expertise to formalize the desired semantics, supervised methods have emerged to learn the hidden user-defined relevance from user-provided examples. Along this line, in this paper we propose a novel generative model over KGs for relevance search, named GREASE. The model applies to meta-path based relevance where a meta-path characterizes a particular type of semantics of relating the query entity to answer entities. It is also extended to support properties that constrain answer entities. Extensive experiments on two large-scale KGs demonstrate that GREASE has advanced the state of the art in effectiveness, expressiveness, and efficiency.Comment: 9 pages, accepted to WSDM 202

    Double-Phase-Shifter based Hybrid Beamforming for mmWave DFRC in the Presence of Extended Target and Clutters

    Full text link
    In millimeter-wave (mmWave) dual-function radar-communication (DFRC) systems, hybrid beamforming (HBF) is recognized as a promising technique utilizing a limited number of radio frequency chains. In this work, in the presence of extended target and clutters, a HBF design based on the subarray connection architecture is proposed for a multiple-input multiple-output (MIMO) DFRC system. In this HBF, the double-phase-shifter (DPS) structure is embedded to further increase the design flexibility. We derive the communication spectral efficiency (SE) and radar signal-to-interference-plus-noise-ratio (SINR) with respect to the transmit HBF and radar receiver, and formulate the HBF design problem as the SE maximization subjecting to the radar SINR and power constraints. To solve the formulated nonconvex problem, the joinT Hybrid bRamforming and Radar rEceiver OptimizatioN (THEREON) is proposed, in which the radar receiver is optimized via the generalized eigenvalue decomposition, and the transmit HBF is updated with low complexity in a parallel manner using the consensus alternating direction method of multipliers (consensus-ADMM). Furthermore, we extend the proposed method to the multi-user multiple-input single-output (MU-MISO) scenario. Numerical simulations demonstrate the efficacy of the proposed algorithm and show that the solution provides a good trade-off between number of phase shifters and performance gain of the DPS HBF

    Evolution from quantum anomalous Hall insulator to heavy-fermion semimetal in magic-angle twisted bilayer graphene

    Full text link
    The ground states of twisted bilayer graphene (TBG) at chiral and flat-band limit with integer fillings are known from exact solutions, while their dynamical and thermodynamical properties are revealed by unbiased quantum Monte Carlo (QMC) simulations. However, to elucidate experimental observations of correlated metallic, insulating and superconducting states and their transitions, investigations on realistic, or non-chiral cases are vital. Here we employ momentum-space QMC method to investigate the evolution of correlated states in magic-angle TBG away from chiral limit at charge neutrality with polarized spin/valley, which approximates to an experimental case with filling factor ν=−3\nu=-3. We find that the ground state evolves from quatum anomalous Hall insulator into an intriguing correlated semi-metallic state as AA hopping strength reaches experimental values. Such a state resembles the recently proposed heavy-fermion representations with localized electrons residing at AA stacking regions and delocalized electrons itinerating via AB/BA stacking regions. The spectral signatures of the localized and itinerant electrons in the heavy-fermion semimetal phase are revealed, with the connection to experimental results being discussed.Comment: 6 pages, 4 figures with supplementary material (6 pages, 11 figures
    • …
    corecore