9 research outputs found

    Ventricular Tachyarrhythmias In Rats With Acute Myocardial Infarction Involves Activation Of Small-Conductance Ca\u3csup\u3e2+\u3c/sup\u3e-Activated K\u3csup\u3e+\u3c/sup\u3e Channels

    No full text
    In vitro experiments have shown that the upregulation of small-conductance Ca2+-activated K+ (SK) channels in ventricular epicardial myocytes is responsible for spontaneous ventricular fibrillation (VF) in failing ventricles. However, the role of SK channels in regulating VF has not yet been described in in vivo acute myocardial infarction (AMI) animals. The present study determined the role of SK channels in regulating spontaneous sustained ventricular tachycardia (SVT) and VF, the inducibility of ventricular tachyarrhythmias, and the effect of inhibition of SK channels on spontaneous SVT/VF and electrical ventricular instability in AMI rats. AMI was induced by ligation of the left anterior descending coronary artery in anesthetized rats. Spontaneous SVT/VF was analyzed, and programmed electrical stimulation was performed to evaluate the inducibility of ventricular tachyarrhythmias, ventricular effective refractory period (VERP), and VF threshold (VFT). In AMI, the duration and episodes of spontaneous SVT/VF were increased, and the inducibility of ventricular tachyarrhythmias was elevated. Pretreatment in the AMI group with the SK channel blocker apamin or UCL-1684 significantly reduced SVT/VF and inducibility of ventricular tachyarrhythmias (P \u3c 0.05). Various doses of apamin (7.5, 22.5, 37.5, and 75.0 μg/kg iv) inhibited SVT/VF and the inducibility of ventricular tachyarrhythmias in a dose-dependent manner. Notably, no effects were observed in sham-operated controls. Additionally, VERP was shortened in AMI animals. Pretreatment in AMI animals with the SK channel blocker significantly prolonged VERP (P \u3c 0.05). No effects were observed in sham-operated controls. Furthermore, VFT was reduced in AMI animals, and block of SK channels increased VFT in AMI animals, but, again, this was without effect in sham-operated controls. Finally, the monophasic action potential duration at 90% repolarization (MAPD90) was examined in the myocardial infarcted (MI) and nonmyocardial infarcted areas (NMI) of the left ventricular epicardium. Electrophysiology recordings showed that MAPD90 in the MI area was shortened in AMI animals, and pretreatment with SK channel blocker apamin or UCL- 1684 significantly prolonged MAPD90 (P \u3c 0.05) in the MI area but was without effect in the NMI area or in sham-operated controls. We conclude that the activation of SK channels may underlie the mechanisms of spontaneous SVT/VF and suseptibility to ventricular tachyarrhythmias in AMI. Inhibition of SK channels normalized the shortening of MAPD90 in the MI area, which may contribute to the inhibitory effect on spontaneous SVT/VF and inducibility of ventricular tachyarrhythmias in AMI. © 2013 the American Physiological Society

    Small Conductance Ca\u3csup\u3e2+\u3c/sup\u3e-Activated K\u3csup\u3e+\u3c/sup\u3e Channels Regulate Firing Properties And Excitability In Parasympathetic Cardiac Motoneurons In The Nucleus Ambiguus

    No full text
    Small conductance Ca2+-activated K+ channels (SK) regulate action potential (AP) firing properties and excitability in many central neurons. However, the functional roles of SK channels of parasympathetic cardiac motoneurons (PCMNs) in the nucleus ambiguus have not yet been well characterized. In this study, the tracer X-rhodamine-5 (and 6)-isothiocyanate (XRITC) was injected into the pericardial sac to retrogradely label PCMNs in FVB mice at postnatal days 7-9. Two days later, XRITC-labeled PCMNs in brain stem slices were identified. With the use of whole cell current clamp, single APs and spike trains of different frequencies were evoked by current injections. We found that 1) PCMNs have two different firing patterns: the majority of PCMNs (90%) exhibited spike frequency adaptation (SFA) and the rest (10%) showed less or no adaptation; 2) application of the specific SK channel blocker apamin significantly increased spike half-width in single APs and trains and reduced the spike frequency-dependent AP broadening in trains; 3) SK channel blockade suppressed afterhyperpolarization (AHP) amplitude following single APs and trains and abolished spike-frequency dependence of AHP in trains; and 4) SK channel blockade increased the spike frequency but did not alter the pattern of SFA. Using whole cell voltage clamp, we measured outward currents and afterhyperpolarization current (IAHP). SK channel blockade revealed that SK-mediated outward currents had both transient and persistent components. After bath application of apamin and Ca2+-free solution, we found that apamin-sensitive and Ca2+-sensitive IAHP were comparable, confirming that SK channels may contribute to a major portion of Ca2+-activated K+ channel-mediated IAHP. These results suggest that PC-MNs have SK channels that significantly regulate AP repolarization, AHP, and spike frequency but do not affect SFA. We conclude that activation of SK channels underlies one of the mechanisms for negative control of PCMN excitability. Copyright © 2010 the American Physiological Society

    Ventricular tachyarrhythmias in rats with acute myocardial infarction involves activation of small-conductance Ca\u3csup\u3e2+\u3c/sup\u3e-activated K\u3csup\u3e+\u3c/sup\u3e channels

    No full text
    In vitro experiments have shown that the upregulation of small-conductance Ca2+-activated K+ (SK) channels in ventricular epicardial myocytes is responsible for spontaneous ventricular fibrillation (VF) in failing ventricles. However, the role of SK channels in regulating VF has not yet been described in in vivo acute myocardial infarction (AMI) animals. The present study determined the role of SK channels in regulating spontaneous sustained ventricular tachycardia (SVT) and VF, the inducibility of ventricular tachyarrhythmias, and the effect of inhibition of SK channels on spontaneous SVT/VF and electrical ventricular instability in AMI rats. AMI was induced by ligation of the left anterior descending coronary artery in anesthetized rats. Spontaneous SVT/VF was analyzed, and programmed electrical stimulation was performed to evaluate the inducibility of ventricular tachyarrhythmias, ventricular effective refractory period (VERP), and VF threshold (VFT). In AMI, the duration and episodes of spontaneous SVT/VF were increased, and the inducibility of ventricular tachyarrhythmias was elevated. Pretreatment in the AMI group with the SK channel blocker apamin or UCL-1684 significantly reduced SVT/VF and inducibility of ventricular tachyarrhythmias (P \u3c 0.05). Various doses of apamin (7.5, 22.5, 37.5, and 75.0 μg/kg iv) inhibited SVT/VF and the inducibility of ventricular tachyarrhythmias in a dose-dependent manner. Notably, no effects were observed in sham-operated controls. Additionally, VERP was shortened in AMI animals. Pretreatment in AMI animals with the SK channel blocker significantly prolonged VERP (P \u3c 0.05). No effects were observed in sham-operated controls. Furthermore, VFT was reduced in AMI animals, and block of SK channels increased VFT in AMI animals, but, again, this was without effect in sham-operated controls. Finally, the monophasic action potential duration at 90% repolarization (MAPD90) was examined in the myocardial infarcted (MI) and nonmyocardial infarcted areas (NMI) of the left ventricular epicardium. Electrophysiology recordings showed that MAPD90 in the MI area was shortened in AMI animals, and pretreatment with SK channel blocker apamin or UCL-1684 significantly prolonged MAPD90 (P \u3c 0.05) in the MI area but was without effect in the NMI area or in sham-operated controls. We conclude that the activation of SK channels may underlie the mechanisms of spontaneous SVT/VF and susceptibility to ventricular tachyarrhythmias in AMI. Inhibition of SK channels normalized the shortening of MAPD90 in the MI area, which may contribute to the inhibitory effect on spontaneous SVT/VF and inducibility of ventricular tachyarrhythmias in AMI

    Targeting VCP potentiates immune checkpoint therapy for colorectal cancer

    No full text
    Summary: Immune checkpoint blockade therapies are still ineffective for most patients with colorectal cancer (CRC). Immunogenic cell death (ICD) enables the release of key immunostimulatory signals to drive efficient anti-tumor immunity, which could be used to potentiate the effects of immune checkpoint inhibitors. Here, we showed that inhibition of valosin-containing protein (VCP) elicits ICD in CRC. Meanwhile, VCP inhibitor upregulates PD-L1 expression and compromises anti-tumor immunity in vivo. Mechanistically, VCP transcriptionally regulates PD-L1 expression in a JAK1-dependent manner. Combining VCP inhibitor with anti-PD1 remodels tumor immune microenvironment and reduces tumor growth in mouse models of CRC. Addition of oncolytic virus further augments the therapeutic activity of the combination regimen. Our study shows the molecular mechanism for regulating PD-L1 expression by VCP and suggests that inhibition of VCP has the potential to increase the efficacy of immunotherapy in CRC

    Attitudes toward COVID-19 Vaccination: A Survey of Chinese Patients with Rheumatic Diseases

    No full text
    The coronavirus disease 2019 (COVID-19) pandemic has imposed enormous morbidity and mortality burdens. Patients with rheumatic diseases (RDs) are vulnerable to the COVID-19 infection, given their immunocompromised status. Ensuring acceptance of the COVID-19 vaccine is important and has attracted attention by health professionals. In this study, we designed an online cross-sectional survey that used an online questionnaire from 8 May 2021 to 4 October 2021. Attitudes toward the COVID-19 vaccination, personal information, current disease activity status, adverse events (AEs), and knowledge sources of vaccines were collected. Descriptive statistics, nonparametric tests, and ordinal logistic regression were used to analyze the data. A total of 1022 questionnaires were received, among which 70.2% (720/1022) of patients with RDs agreed to vaccination, while only 31.6% of patients were actually vaccinated. Male, employed, high-income patients and those with inactive disease showed a more positive attitude. Concerns of AEs and disease flare were the main factors affecting vaccination willingness. Only 29.6% (304/1022) of patients thought they had received enough information about the COVID-19 vaccine from their doctors. In conclusion, most patients with RDs in China intended to get vaccinated, although the vaccination rate in this particular population was low. Rheumatologists should take more responsibility in COVID-19 vaccination education of patients with RDs
    corecore