257 research outputs found

    Distributed Estimation and Inference with Statistical Guarantees

    Full text link
    This paper studies hypothesis testing and parameter estimation in the context of the divide and conquer algorithm. In a unified likelihood based framework, we propose new test statistics and point estimators obtained by aggregating various statistics from kk subsamples of size n/kn/k, where nn is the sample size. In both low dimensional and high dimensional settings, we address the important question of how to choose kk as nn grows large, providing a theoretical upper bound on kk such that the information loss due to the divide and conquer algorithm is negligible. In other words, the resulting estimators have the same inferential efficiencies and estimation rates as a practically infeasible oracle with access to the full sample. Thorough numerical results are provided to back up the theory

    Molecular dynamics simulation of graphene sinking during chemical vapor deposition growth on semi-molten Cu substrate

    Get PDF
    Copper foil is the most promising catalyst for the synthesis of large-area, high-quality monolayer graphene. Experimentally, it has been found that the Cu substrate is semi-molten at graphene growth temperatures. In this study, based on a self-developed C-Cu empirical potential and density functional theory (DFT) methods, we performed systematic molecular dynamics simulations to explore the stability of graphene nanostructures, i.e., carbon nanoclusters and graphene nanoribbons, on semi-molten Cu substrates. Many atomic details observed in the classical MD simulations agree well with those seen in DFT-MD simulations, confirming the high accuracy of the C-Cu potential. Depending on the size of the graphene island, two different sunken-modes are observed: (i) graphene island sinks into the first layer of the metal substrate and (ii) many metal atoms surround the graphene island. Further study reveals that the sinking graphene leads to the unidirectional alignment and seamless stitching of the graphene islands, which explains the growth of large single-crystal graphene on Cu foil. This study deepens our physical insights into the CVD growth of graphene on semi-molten Cu substrate with multiple experimental mysteries well explained and provides theoretic references for the controlled synthesis of large-area single-crystalline monolayer graphene

    Binarizing Sparse Convolutional Networks for Efficient Point Cloud Analysis

    Full text link
    In this paper, we propose binary sparse convolutional networks called BSC-Net for efficient point cloud analysis. We empirically observe that sparse convolution operation causes larger quantization errors than standard convolution. However, conventional network quantization methods directly binarize the weights and activations in sparse convolution, resulting in performance drop due to the significant quantization loss. On the contrary, we search the optimal subset of convolution operation that activates the sparse convolution at various locations for quantization error alleviation, and the performance gap between real-valued and binary sparse convolutional networks is closed without complexity overhead. Specifically, we first present the shifted sparse convolution that fuses the information in the receptive field for the active sites that match the pre-defined positions. Then we employ the differentiable search strategies to discover the optimal opsitions for active site matching in the shifted sparse convolution, and the quantization errors are significantly alleviated for efficient point cloud analysis. For fair evaluation of the proposed method, we empirically select the recently advances that are beneficial for sparse convolution network binarization to construct a strong baseline. The experimental results on Scan-Net and NYU Depth v2 show that our BSC-Net achieves significant improvement upon our srtong baseline and outperforms the state-of-the-art network binarization methods by a remarkable margin without additional computation overhead for binarizing sparse convolutional networks.Comment: Accepted to CVPR202

    Learning Accurate Performance Predictors for Ultrafast Automated Model Compression

    Full text link
    In this paper, we propose an ultrafast automated model compression framework called SeerNet for flexible network deployment. Conventional non-differen-tiable methods discretely search the desirable compression policy based on the accuracy from exhaustively trained lightweight models, and existing differentiable methods optimize an extremely large supernet to obtain the required compressed model for deployment. They both cause heavy computational cost due to the complex compression policy search and evaluation process. On the contrary, we obtain the optimal efficient networks by directly optimizing the compression policy with an accurate performance predictor, where the ultrafast automated model compression for various computational cost constraint is achieved without complex compression policy search and evaluation. Specifically, we first train the performance predictor based on the accuracy from uncertain compression policies actively selected by efficient evolutionary search, so that informative supervision is provided to learn the accurate performance predictor with acceptable cost. Then we leverage the gradient that maximizes the predicted performance under the barrier complexity constraint for ultrafast acquisition of the desirable compression policy, where adaptive update stepsizes with momentum are employed to enhance optimality of the acquired pruning and quantization strategy. Compared with the state-of-the-art automated model compression methods, experimental results on image classification and object detection show that our method achieves competitive accuracy-complexity trade-offs with significant reduction of the search cost.Comment: Accepted to IJC

    Joint Communication and Computation Design in Transmissive RMS Transceiver Enabled Multi-Tier Computing Networks

    Full text link
    In this paper, a novel transmissive reconfigurable meta-surface (RMS) transceiver enabled multi-tier computing network architecture is proposed for improving computing capability, decreasing computing delay and reducing base station (BS) deployment cost, in which transmissive RMS equipped with a feed antenna can be regarded as a new type of multi-antenna system. We formulate a total energy consumption minimization problem by a joint optimization of subcarrier allocation, task input bits, time slot allocation, transmit power allocation and RMS transmissive coefficient while taking into account the constraints of communication resources and computing resources. This formulated problem is a non-convex optimization problem due to the high coupling of optimization variables, which is NP-hard to obtain its optimal solution. To address the above challenging problems, block coordinate descent (BCD) technique is employed to decouple the optimization variables to solve the problem. Specifically, the joint optimization problem of subcarrier allocation, task input bits, time slot allocation, transmit power allocation and RMS transmissive coefficient is divided into three subproblems to solve by applying BCD. Then, the decoupled three subproblems are optimized alternately by using successive convex approximation (SCA) and difference-convex (DC) programming until the convergence is achieved. Numerical results verify that our proposed algorithm is superior in reducing total energy consumption compared to other benchmarks

    Towards Accurate Data-free Quantization for Diffusion Models

    Full text link
    In this paper, we propose an accurate data-free post-training quantization framework of diffusion models (ADP-DM) for efficient image generation. Conventional data-free quantization methods learn shared quantization functions for tensor discretization regardless of the generation timesteps, while the activation distribution differs significantly across various timesteps. The calibration images are acquired in random timesteps which fail to provide sufficient information for generalizable quantization function learning. Both issues cause sizable quantization errors with obvious image generation performance degradation. On the contrary, we design group-wise quantization functions for activation discretization in different timesteps and sample the optimal timestep for informative calibration image generation, so that our quantized diffusion model can reduce the discretization errors with negligible computational overhead. Specifically, we partition the timesteps according to the importance weights of quantization functions in different groups, which are optimized by differentiable search algorithms. We also select the optimal timestep for calibration image generation by structural risk minimizing principle in order to enhance the generalization ability in the deployment of quantized diffusion model. Extensive experimental results show that our method outperforms the state-of-the-art post-training quantization of diffusion model by a sizable margin with similar computational cost
    corecore