21 research outputs found

    Valley: Video Assistant with Large Language model Enhanced abilitY

    Full text link
    Large language models (LLMs), with their remarkable conversational capabilities, have demonstrated impressive performance across various applications and have emerged as formidable AI assistants. In view of this, it raises an intuitive question: Can we harness the power of LLMs to build multimodal AI assistants for visual applications? Recently, several multi-modal models have been developed for this purpose. They typically pre-train an adaptation module to align the semantics of the vision encoder and language model, followed by fine-tuning on instruction-following data. However, despite the success of this pipeline in image and language understanding, its effectiveness in joint video and language understanding has not been widely explored. In this paper, we aim to develop a novel multi-modal foundation model capable of comprehending video, image, and language within a general framework. To achieve this goal, we introduce Valley, a Video Assistant with Large Language model Enhanced abilitY. The Valley consists of a LLM, a temporal modeling module, a visual encoder, and a simple projection module designed to bridge visual and textual modes. To empower Valley with video comprehension and instruction-following capabilities, we construct a video instruction dataset and adopt a two-stage tuning procedure to train it. Specifically, we employ ChatGPT to facilitate the construction of task-oriented conversation data encompassing various tasks, including multi-shot captions, long video descriptions, action recognition, causal relationship inference, etc. Subsequently, we adopt a pre-training-then-instructions-tuned pipeline to align visual and textual modalities and improve the instruction-following capability of Valley. Qualitative experiments demonstrate that Valley has the potential to function as a highly effective video assistant that can make complex video understanding scenarios easy

    Bifurcation Analysis of Stick-Slip Motion of the Vibration-Driven System with Dry Friction

    No full text
    This paper is concerned with the vibration-driven system which can move due to the periodic motion of the internal mass and the dry friction; the system can be modeled as Filippov system and has the property of stick-slip motion. Different periodic solutions of stick-slip motion can be analyzed through sliding bifurcation, two-parameter numerical continuation for sliding bifurcation is carried out to get the different bifurcation curves, and the bifurcation curves divide the parameters plane into different regions which stand for different stick-slip motion of the periodic solution. Furthermore, continuations with additional condition v=0 are carried out for the directional control of the vibration-driven system in one period; the curves divide the parameter plane into different progressions

    Permafrost degeneration in the east of Qinghai-Xizang Plateau

    No full text

    Cable Force Optimization of Cable-Stayed Bridge Based on Multiobjective Particle Swarm Optimization Algorithm with Mutation Operation and the Influence Matrix

    No full text
    To compensate the incapability of traditional cable force adjustment methods to automatically optimize cable forces, this paper proposes Midas/Civil and MATLAB as a structure calculator and a cable force optimizer, and external memory as a data transfer. Initial solutions from conventional methods can be optimized by internalizing the influence matrix into the multiobjective particle swarm optimization algorithm with mutation operation and constructing the mathematical model of cable force optimization, and then, a series of Pareto frontier solution sets are obtained. For the first time, fuzzy set theory is introduced for selecting Pareto presolution set for the optimization of cable-stayed bridges, to solve the final reasonable dead load state of bridges. By using this method, the peak vertical displacement of a main girder of the optimized cable-stayed bridge decreased from −11 mm to −6 mm, with a reduction of 45%. Before and after optimization, the difference of peak negative bending moment at the top of the pier was 34.8%, indicating that the main beam was more evenly stressed and the alignment was more reasonable

    Echocardiographic characteristics of primary malignant pericardial mesothelioma and outcomes analysis: a retrospective study

    No full text
    Abstract Background Little is known about the echocardiographic characteristics of primary malignant pericardial mesothelioma (PPM) due to its rarity. The aim of this study was to explore the sex-specific echocardiographic patterns of PPM and risk factors for in-hospital mortality. Methods A retrospective information retrieval was conducted for cases of PPM reported from China during 1981 and 2015. The diagnosis was made by histopathological examinations and only cases with echocardiographic descriptions were included. Data on the clinical and echocardiographic findings were collected. Difference in clinical, sex-specific echocardiographic characteristics and findings across different time periods were assessed. Logistic regression analysis was performed to explore echocardiographic risk factors for in-hospital mortality. Results A total of 64 patients with PPM were included, with a mean age of 39.2 ± 15.6 years and minor male dominance (40, 62.5%). The most common echocardiographic presentations were pericardial effusion (55, 85.9%), pericardial masses (36.4%) and thickening (17.3%), respectively. The positive rate of pericardiocentesis was only 20.9%. Six patients (15.4%) died among 39 cases reporting in-hospital outcome. Logistics analysis identified no clinical or echocardiographic parameters associated with in-hospital mortality (all P > 0.05). Conclusions The echocardiographic signs of PPM are basically nonspecific with massive pericardial effusion as the most common sign, although no echocardiographic gender differences or association with in-hospital mortality could be identified

    Dynamic contrast-enhanced magnetic resonance imaging assessment of residual tumor angiogenesis after insufficient microwave ablation and donafenib adjuvant therapy

    No full text
    Abstract To analyze the correlation between dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) permeability parameters and serum vascular endothelial growth factor (VEGF) levels in a rabbit VX2 liver cancer model with insufficient microwave ablation (MWA), to observe the dynamic changes in residual tumor angiogenesis in the short term after MWA, and to assess the effectiveness of donafenib as adjuvant therapy. Forty rabbits with VX2 liver tumors were randomly divided into three groups: an insufficient MWA group (n = 15), a combined treatment group (n = 15) and a control group (n = 10). The dynamic changes in VEGF expression after MWA and the effectiveness of donafenib as adjuvant therapy were evaluated by DCE-MRI and serum VEGF levels before surgery and 1, 3, 7, and 14 days after surgery. The correlation between the volume translate constant (Ktrans) of DCE-MRI parameters and serum VEGF levels fluctuated after ablation, but the coefficient was always positive (all p < 0.001). Repeated-measures ANOVA revealed significant changes in the serum VEGF concentration (F = 40.905, p < 0.001; partial η2 = 0.689), Ktrans (F = 13.388, p < 0.001; partial η2 = 0.420), and tumor diameter in each group (F = 34.065, p < 0.001; partial η2 = 0.648) at all five time points. Pairwise comparisons showed that the serum VEGF level, Ktrans value and tumor diameter in the insufficient MWA group and combined treatment group were significantly lower at 1 d than in the control group, but these values gradually increased over time (all p < 0.05). Ktrans and tumor diameter were significantly greater in the insufficient MWA group than in the control group at 14 days (all p < 0.05). The serum VEGF concentration, Ktrans, and tumor diameter were significantly lower in the combined treatment group than in the other two groups at 3, 7, and 14 days (all p < 0.05). Ktrans is positively correlated with the serum VEGF concentration. Ktrans and the serum VEGF concentration changed significantly after treatment with insufficient ablation or in combination with donafenib, and Ktrans may change faster. Insufficient MWA promotes the progression of residual tumors. Adjuvant treatment with donafenib is effective

    A Systematic Study on Berthing Capacity Assessment of Sanya Yazhou Fishing Port by Typhoon Prediction Model

    No full text
    This paper sheds light on the effect of combination modes on the evaluation of berthing capacity for Sanya Yazhou Fishing Port (SYFP) under hypothetical typhoon conditions. By statistically analysing the maximum probability of moving speeds and directions of historical typhoons passing through the fishing port, the representative typhoon path was determined with the nonparametric regression method. The designed typhoon wind fields of levels 12–17 were generated based on Holland’s parametric wind model. Then, the MIKE 21 BW model was used to obtain the high-precision wave distribution in the fishing port. The boundary conditions (significant wave height and peak period) of the MIKE 21 BW model were calculated by combining the MIKE 21 SW model with the designed typhoon wind fields. In SYFP, ships usually adopt the modes of multi-ship side-by-side and single anchor mooring during typhoons. In fair weather, approximately 158 vessels can be berthed if they are all large ones, while approximately 735 vessels can be moored if they are all small ones. However, with an increase in typhoon levels, the anchoring area for small vessels decreases. From the perspective of wave distribution in the fishing port, the number of large vessels moored was hardly affected by typhoons. This can be attributed to the breakwater, which significantly decreases the large wave height in the fishing port. Finally, a study on the framework of a method for hazard assessment of berthing capacity in the coming typhoon-driven storm waves was set up

    A Systematic Study on Berthing Capacity Assessment of Sanya Yazhou Fishing Port by Typhoon Prediction Model

    No full text
    This paper sheds light on the effect of combination modes on the evaluation of berthing capacity for Sanya Yazhou Fishing Port (SYFP) under hypothetical typhoon conditions. By statistically analysing the maximum probability of moving speeds and directions of historical typhoons passing through the fishing port, the representative typhoon path was determined with the nonparametric regression method. The designed typhoon wind fields of levels 12&ndash;17 were generated based on Holland&rsquo;s parametric wind model. Then, the MIKE 21 BW model was used to obtain the high-precision wave distribution in the fishing port. The boundary conditions (significant wave height and peak period) of the MIKE 21 BW model were calculated by combining the MIKE 21 SW model with the designed typhoon wind fields. In SYFP, ships usually adopt the modes of multi-ship side-by-side and single anchor mooring during typhoons. In fair weather, approximately 158 vessels can be berthed if they are all large ones, while approximately 735 vessels can be moored if they are all small ones. However, with an increase in typhoon levels, the anchoring area for small vessels decreases. From the perspective of wave distribution in the fishing port, the number of large vessels moored was hardly affected by typhoons. This can be attributed to the breakwater, which significantly decreases the large wave height in the fishing port. Finally, a study on the framework of a method for hazard assessment of berthing capacity in the coming typhoon-driven storm waves was set up

    The Stabilizing of 1T-MoS<sub>2</sub> for All-Solid-State Lithium-Ion Batteries

    No full text
    All-solid-state batteries (SSBs) are prospective candidates for a range of energy accumulation systems, delivering higher energy densities compared to batteries which use liquid electrolytes. Amongst the numerous solid-state electrolytes (SEs), sulfide-based electrolytes in particular have received more attention given that they have a high ionic conductivity. However, the incompatibility between the electrode and SEs is still an ongoing challenge that leads to poor electrochemical performance. In this work, we focus on 1T-MoS2. It is well known that 1T metallic MoS2 is unstable even at room temperature. However, we showed that 1T-MoS2 can be stabilized at 600 °C for at least 2 h, and the 1T-MoS2-600 interlayer spacing expanded to 0.95 nm. The high crystallinity of the 1T phase is highly compatible with solid electrolytes and coupled with the increased interlayer spacing, so in the all-solid-state lithium-ion battery (ALLLIB), we achieved outstanding cycling performance. At the current density of 0.2 C (1 C = 670 mA g−1), this material delivered a capacity of 406 mA h g−1 after 50 cycles

    Propagation and Diffusion of Fluorescent Substances with Footprints in Indoor Environments

    No full text
    Some studies have shown that contaminants can be transferred between floors and the soles, and there are few studies on pollutant propagation caused by human walking in real-life situations. This study explored the propagation and diffusion law of ground pollutants from rubber soles to poly vinyl chloride (PVC) floor during indoor walking through employing a fluorescent solution as a simulant. The footprint decay (D) and transfer efficiency (&tau;) of the fluorescent solution transferred from the sole to the indoor floor during walking were analyzed based on the fluorescent footprint imaging. The effects of namely body weight (50&ndash;75 kg), walking frequency (80&ndash;120 steps/min), and solution viscosity (oil and water) were also investigated. It was found that the total fluorescence gray value on the ground decreased exponentially as the number of walking steps (i) increased. The relationship between the normalized gray value of the fluorescent solution (D) on each floor panel i was Di=aebi,2.1&le;a&le;3.8,&ndash;1.4&le;b&le;&ndash;0.7, and &tau; was distributed in the range of 0.51&ndash;0.72. All influencing factors had a significant effect on a, and a greater body weight resulted in a smaller a value, while only the body weight had a significant effect on b and &tau;, and a greater body weight led to larger b and lower &tau; values
    corecore