38 research outputs found
Population Redistribution among Multiple Electronic States of Molecular Nitrogen Ions in Strong Laser Fields
We carry out a combined theoretical and experimental investigation on the
population distributions in the ground and excited states of tunnel ionized N2
molecules at various driver wavelengths in the near- and mid-infrared range.
Our results reveal that efficient couplings (i.e., population exchanges)
between the ground state and the excited states occur in strong laser fields.
The couplings result in the population inversion between the ground and the
excited states at the wavelengths near 800 nm, which is verified by our
experiment by observing the amplification of a seed at ~391 nm. The result
provides insight into the mechanism of free-space nitrogen ion lasers generated
in remote air with strong femtosecond laser pulses.Comment: 18 pages, 4 figure
Attention-controlled assistive wrist rehabilitation using a low-cost EEG sensor
It is essential to make sure patients be actively involved in motor training using robot-assisted rehabilitation to achieve better rehabilitation outcomes. This paper introduces an attention-controlled wrist rehabilitation method using a low-cost EEG sensor. Active rehabilitation training is realized using a threshold of the attention level measured by the low-cost EEG sensor as a switch for a flexible wrist exoskeleton assisting wrist flexion/extension and radial/ulnar deviation. We present a prototype implementation of this active training method and provide a preliminary evaluation. The feasibility of the attention-based control was proven with the overall actuation success rate of 95%. The experimental results also proved that the visual guidance was helpful for the users to concentrate on the wrist rehabilitation training: two types of visual guidance, namely, looking at the hand motion shown on a video and looking at the user's own hand had no significant performance difference. A general threshold of a certain group of users can be utilized in the wrist robot control rather than a customized threshold to simplify the procedure
Serum Osteocalcin Is Associated with Inflammatory Factors in Metabolic Syndrome: A Population-Based Study in Chinese Males
Osteocalcin (OCN) was potentially associated with inflammatory factors, so we explored the metabolic role in this association in general population. Our findings suggest that OCN was positively associated with IgG while inversely associated with C3, both of which were probably mediated by obesity. Moreover, serum OCN was inversely associated with hsCRP in men with impaired fasting glucose, hyperglycemia, or metabolic syndrome, while its association with IgE was significantly observed in men with a normal metabolic profile
The Interaction between Hypovirulence-Associated Chrysoviruses and Their Host <i>Fusarium</i> Species
Chrysoviruses are isometric virus particles (35–50 nm in diameter) with a genome composed of double-stranded RNAs (dsRNA). These viruses belonged to the Chrysoviridae family, named after the first member isolated from Penicillium chrysogenum. Phylogenetic classification has divided the chrysoviruses into Alphachrysovirus and Betachrysovirus genera. Currently, these chrysoviruses have been found to infect many fungi, including Fusarium species, and cause changes in the phenotype and decline in the pathogenicity of the host. Thus, it is a microbial resource with great biocontrol potential against Fusarium species, causing destructive plant diseases and substantial economic losses. This review provides a comprehensive overview of three chrysovirus isolates (Fusarium graminearum virus 2 (FgV2), Fusarium graminearum virus-ch9 (FgV-ch9), and Fusarium oxysporum f. sp. dianthi mycovirus 1 (FodV1)) reported to decline the pathogenicity of Fusarium hosts. It also summarizes the recent studies on host response regulation, host RNA interference, and chrysovirus transmission. The information provided in the review will be a reference for analyzing the interaction of Fusarium species with chrysovirus and proposing opportunities for research on the biocontrol of Fusarium diseases. Finally, we present reasons for conducting further studies on exploring the interaction between chrysoviruses and Fusarium and improving the accumulation and transmission efficiency of these chrysoviruses
Profiling of rhizosphere bacterial community associated with sugarcane and banana rotation system
Abstract Background Guangxi is the leading sugarcane-producing area in China. Due to the Panama disease outbreak in banana gardens, sugarcane and banana rotation was recommended. A field experiment with the newly released sugarcane cultivar Zhongzhe 1 (ZZ1) was conducted to understand the role of the sugarcane–banana rotation system in shaping the rhizosphere microbiota. Fields in the region possess characteristics of red laterite soil. Results Using Illumina HiSeq sequencing to analyze soil samples’ 16S rRNA V3-V4 region, the preceding banana rotation field had relatively greater bacterial diversity than the monoculture sugarcane field. Proteobacteria, Chloroflexi, Actinobacteria, and Acidobacteria were the dominant phyla, with distinct taxa enriched in each environment. However, the preceding sugarcane monoculture field enriched functional groups related to nitrogen fixation and cellulolysis. Network analysis highlighted contrasting network structures between sugarcane and banana rhizospheres, suggesting differential stability and susceptibility to environmental influences. Furthermore, correlations between soil properties and bacterial alpha-diversity underscored the influence of preceding crops on rhizosphere microbial communities. Conclusion This research enhances our understanding of crop rotation effects on soil microbial ecology and provides insights into optimizing agricultural practices for enhanced soil health and crop productivity. Future studies should explore the underlying mechanisms driving these interactions and evaluate the long-term impacts of crop rotation on soil microbial dynamics. Graphical abstrac
Targeted Delivery of siRNA with pH-Responsive Hybrid Gold Nanostars for Cancer Treatment
In this work, we report the engineering of gold nanostars (GNS) to deliver small interfering RNA (siRNA) into HepG2 cells. The ligand DG-PEG-Lipoic acid (LA)-Lys-9R (hydrazone) was designed to functionalize GNS, and create the nanoparticles named as 9R/DG-GNS (hydrazone). In the ligand, 2-deoxyglucose (DG) is the targeting molecule, polyethylene glycol (PEG) helps to improve the dispersity and biocompatibility, 9-poly-d-arginine (9R) is employed to provide a positive surface charge and adsorb negative siRNA, and hydrazone bonds are pH-responsive and can avoid receptor-mediated endosomal recycling. Compared to GNS alone, 9R/DG-GNS (hydrazone) showed superior transfection efficiency. The expressions of cyclooxygenase-2 (COX-2) in HepG2 and SGC7901 cells were significantly suppressed by siRNA/9R/DG-GNS (hydrazone) complex. Notably, 9R/DG-GNS (hydrazone) possessed low cytotoxicity even at high concentrations in both normal cells and tumor cells. The combination treatment of siRNA/9R/DG-GNS (hydrazone) complex inhibited the cell growth rate by more than 75%. These results verified that the pH-responsive GNS complex is a promising siRNA delivery system for cancer therapy, and it is anticipated that near-infrared absorbing GNS with good photothermal conversion efficiency can be potentially used for photothermal therapy of tumors