3 research outputs found
Recommended from our members
Proliferative and Transcriptional Identity of Distinct Classes of Neural Precursors in the Mammalian Olfactory Epithelium
Neural precursors in the developing olfactory epithelium (OE) give rise to three major neuronal classes – olfactory receptor (ORNs), vomeronasal (VRNs) and gonadotropin releasing hormone (GnRH) neurons. Nevertheless, the molecular and proliferative identities of these precursors are largely unknown. We characterized two precursor classes in the olfactory epithelium (OE) shortly after it becomes a distinct tissue at midgestation in the mouse: slowly dividing self-renewing precursors that express Meis1/2 at high levels, and rapidly dividing neurogenic precursors that express high levels of Sox2 and Ascl1. Precursors expressing high levels of Meis genes primarily reside in the lateral OE, whereas precursors expressing high levels of Sox2 and Ascl1 primarily reside in the medial OE. Fgf8 maintains these expression signatures and proliferative identities. Using electroporation in the wild-type embryonic OE in vitro as well as Fgf8, Sox2 and Ascl1 mutant mice in vivo, we found that Sox2 dose and Meis1 – independent of Pbx co-factors – regulate Ascl1 expression and the transition from lateral to medial precursor state. Thus, we have identified proliferative characteristics and a dose-dependent transcriptional network that define distinct OE precursors: medial precursors that are most probably transit amplifying neurogenic progenitors for ORNs, VRNs and GnRH neurons, and lateral precursors that include multi-potent self-renewing OE neural stem cells.Molecular and Cellular Biolog
Recommended from our members
Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain
The maternal and paternal genomes play different roles in mammalian brains as a result of genomic imprinting, an epigenetic regulation leading to differential expression of the parental alleles of some genes. Here we investigate genomic imprinting in the cerebellum using a newly developed Bayesian statistical model that provides unprecedented transcript-level resolution. We uncover 160 imprinted transcripts, including 41 novel and independently validated imprinted genes. Strikingly, many genes exhibit parentally biased—rather than monoallelic—expression, with different magnitudes according to age, organ, and brain region. Developmental changes in parental bias and overall gene expression are strongly correlated, suggesting combined roles in regulating gene dosage. Finally, brain-specific deletion of the paternal, but not maternal, allele of the paternally-biased Bcl-x, (Bcl2l1) results in loss of specific neuron types, supporting the functional significance of parental biases. These findings reveal the remarkable complexity of genomic imprinting, with important implications for understanding the normal and diseased brain. DOI: http://dx.doi.org/10.7554/eLife.07860.00
Application of Microarray, Laser Capture and Transgenic Technologies to the Study of Neural Diversity
A major quest in modem neurobiology is to understand how the brain controls behavior. To this end, the convergence of two traditionally separate fields, systems neuroscience and molecular neuroscience, is required. The delineation of brain regions responsible for different behaviors, and in particular, their underlying neural circuits should be accompanied by the appreciation of the molecules that compose such circuits.
I have taken two approaches toward unraveling the molecular signatures of specific neural structures.
First, I conducted microarray-based RNA expression analyses to search, in a large scale and with no a priori constraints, for differentially expressed gene products in several brain regions, including the amygdala, cerebellum, hippocampus, olfactory bulb and periaqueductal gray. Interestingly, only 0.3% of the genes characterized to date showed restricted expression in distinct brain areas. Further characterization by in situ hybridization was performed for genes enriched in the amygdala, a structure that modulates emotional behavior. Remarkably, this revealed that most region-specific genes possessed expression domains whose limits respected subnuclear boundaries defined by classical cytoarchitectonic criteria.
These analyses were not only informative about the molecular composition of distinct brain areas, but also
provided tools to genetically dissect the role of different brain nuclei in specific behaviors.
Second, I have used a genetic strategy to label all cellular derivatives of neural crest precursor cells
expressing a particular gene, Ngn2. Such lineage tracing study uncovered a segregated cellular subpopulation in the developing peripheral nervous system, which was strongly biased for the generation of sensory rather than autonomic neurons. Despite this fate bias, Ngn2-derived cells in the dorsal root ganglion were equally likely to give rise to neurons or glia. This suggests that some neural crest cells
become restricted to sensory or autonomic sub lineages before becoming committed to neuronal or glial
fates. In general, visualization of the behavior of neural progenitors during the formation of the nervous
system may further our understanding of the generation of specific neuronal subtypes and, eventually,
neuronal connections that shape the functioning brain.
The combination of strategies here described will enable the characterization of brain regions at the molecular level on a broad, systems-based approach.</p