76 research outputs found

    Improve Generalization and Robustness of Neural Networks via Weight Scale Shifting Invariant Regularizations

    Full text link
    Using weight decay to penalize the L2 norms of weights in neural networks has been a standard training practice to regularize the complexity of networks. In this paper, we show that a family of regularizers, including weight decay, is ineffective at penalizing the intrinsic norms of weights for networks with positively homogeneous activation functions, such as linear, ReLU and max-pooling functions. As a result of homogeneity, functions specified by the networks are invariant to the shifting of weight scales between layers. The ineffective regularizers are sensitive to such shifting and thus poorly regularize the model capacity, leading to overfitting. To address this shortcoming, we propose an improved regularizer that is invariant to weight scale shifting and thus effectively constrains the intrinsic norm of a neural network. The derived regularizer is an upper bound for the input gradient of the network so minimizing the improved regularizer also benefits the adversarial robustness. Residual connections are also considered and we show that our regularizer also forms an upper bound to input gradients of such a residual network. We demonstrate the efficacy of our proposed regularizer on various datasets and neural network architectures at improving generalization and adversarial robustness.Comment: 14 pages, 5 figure

    An Efficient Cervical Whole Slide Image Analysis Framework Based on Multi-scale Semantic and Spatial Deep Features

    Full text link
    Digital gigapixel whole slide image (WSI) is widely used in clinical diagnosis, and automated WSI analysis is key for computer-aided diagnosis. Currently, analyzing the integrated descriptor of probabilities or feature maps from massive local patches encoded by ResNet classifier is the main manner for WSI-level prediction. Feature representations of the sparse and tiny lesion cells in cervical slides, however, are still challengeable for the under-promoted upstream encoders, while the unused spatial representations of cervical cells are the available features to supply the semantics analysis. As well as patches sampling with overlap and repetitive processing incur the inefficiency and the unpredictable side effect. This study designs a novel inline connection network (InCNet) by enriching the multi-scale connectivity to build the lightweight model named You Only Look Cytopathology Once (YOLCO) with the additional supervision of spatial information. The proposed model allows the input size enlarged to megapixel that can stitch the WSI without any overlap by the average repeats decreased from 10310410^3\sim10^4 to 10110210^1\sim10^2 for collecting features and predictions at two scales. Based on Transformer for classifying the integrated multi-scale multi-task features, the experimental results appear 0.8720.872 AUC score better and 2.51×2.51\times faster than the best conventional method in WSI classification on multicohort datasets of 2,019 slides from four scanning devices.Comment: 16 pages, 8 figures, already submitted to Medical Image Analysi

    Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions

    Full text link
    The deployment of large language models (LLMs) raises concerns regarding their cultural misalignment and potential ramifications on individuals from various cultural norms. Existing work investigated political and social biases and public opinions rather than their cultural values. To address this limitation, the proposed Cultural Alignment Test (CAT) quantifies cultural alignment using Hofstede's cultural dimension framework, which offers an explanatory cross-cultural comparison through the latent variable analysis. We apply our approach to assess the cultural values embedded in state-of-the-art LLMs, such as: ChatGPT and Bard, across diverse cultures of countries: United States (US), Saudi Arabia, China, and Slovakia, using different prompting styles and hyperparameter settings. Our results not only quantify cultural alignment of LLMs with certain countries, but also reveal the difference between LLMs in explanatory cultural dimensions. While all LLMs did not provide satisfactory results in understanding cultural values, GPT-4 exhibited the highest CAT score for the cultural values of the US.Comment: 31 page

    Bayesian Nested Neural Networks for Uncertainty Calibration and Adaptive Compression

    Full text link
    Nested networks or slimmable networks are neural networks whose architectures can be adjusted instantly during testing time, e.g., based on computational constraints. Recent studies have focused on a "nested dropout" layer, which is able to order the nodes of a layer by importance during training, thus generating a nested set of sub-networks that are optimal for different configurations of resources. However, the dropout rate is fixed as a hyper-parameter over different layers during the whole training process. Therefore, when nodes are removed, the performance decays in a human-specified trajectory rather than in a trajectory learned from data. Another drawback is the generated sub-networks are deterministic networks without well-calibrated uncertainty. To address these two problems, we develop a Bayesian approach to nested neural networks. We propose a variational ordering unit that draws samples for nested dropout at a low cost, from a proposed Downhill distribution, which provides useful gradients to the parameters of nested dropout. Based on this approach, we design a Bayesian nested neural network that learns the order knowledge of the node distributions. In experiments, we show that the proposed approach outperforms the nested network in terms of accuracy, calibration, and out-of-domain detection in classification tasks. It also outperforms the related approach on uncertainty-critical tasks in computer vision.Comment: 16 pages, 10 figure

    Offloading Decision Algorithm Based on Distance Weighted K-Nearest Neighbor in Power Internet of Things

    Get PDF
    With the widespread popularity of power Internet of Things (PIoT), the data collected from smart meters are growing explosively, which makes the calculation task of power data more and more complex. In order to improve computing power and maximize resource utilization, an offloading decision algorithm based on weighted K-nearest neighbor (WKNN) is proposed. It first collects the training set required by the WKNN-based algorithm, including the Received Signal Strength (RSS) required for offloading, the transmission rate, and the load balance of the Access Point (AP), and then the Euclidean distance between the training set and the sample is weighted by Gaussian function. Finally, the result with the largest K similarities in the training set is the offloading result. The simulation results show that the proposed algorithm reduces the offloading delay of the computing tasks and improves the resource utilization rate effectively when the number of meters increases in the network, which ensures that the resources of the mobile edge computing (MEC) servers in the system can be effectively and evenly utilized
    corecore