1 research outputs found
Image_1_Exploring a novel seven-gene marker and mitochondrial gene TMEM38A for predicting cervical cancer radiotherapy sensitivity using machine learning algorithms.png
BackgroundRadiotherapy plays a crucial role in the management of Cervical cancer (CC), as the development of resistance by cancer cells to radiotherapeutic interventions is a significant factor contributing to treatment failure in patients. However, the specific mechanisms that contribute to this resistance remain unclear. Currently, molecular targeted therapy, including mitochondrial genes, has emerged as a new approach in treating different types of cancers, gaining significant attention as an area of research in addressing the challenge of radiotherapy resistance in cancer.MethodsThe present study employed a rigorous screening methodology within the TCGA database to identify a cohort of patients diagnosed with CC who had received radiotherapy treatment. The control group consisted of individuals who demonstrated disease stability or progression after undergoing radiotherapy. In contrast, the treatment group consisted of patients who experienced complete or partial remission following radiotherapy. Following this, we identified and examined the differentially expressed genes (DEGs) in the two cohorts. Subsequently, we conducted additional analyses to refine the set of excluded DEGs by employing the least absolute shrinkage and selection operator regression and random forest techniques. Additionally, a comprehensive analysis was conducted in order to evaluate the potential correlation between the expression of core genes and the extent of immune cell infiltration in patients diagnosed with CC. The mitochondrial-associated genes were obtained from the MITOCARTA 3.0. Finally, the verification of increased expression of the mitochondrial gene TMEM38A in individuals with CC exhibiting sensitivity to radiotherapy was conducted using reverse transcription quantitative polymerase chain reaction and immunohistochemistry assays.ResultsThis process ultimately led to the identification of 7 crucial genes, viz., GJA3, TMEM38A, ID4, CDHR1, SLC10A4, KCNG1, and HMGCS2, which were strongly associated with radiotherapy sensitivity. The enrichment analysis has unveiled a significant association between these 7 crucial genes and prominent signaling pathways, such as the p53 signaling pathway, KRAS signaling pathway, and PI3K/AKT/MTOR pathway. By utilizing these 7 core genes, an unsupervised clustering analysis was conducted on patients with CC, resulting in the categorization of patients into three distinct molecular subtypes. In addition, a predictive model for the sensitivity of CC radiotherapy was developed using a neural network approach, utilizing the expression levels of these 7 core genes. Moreover, the CellMiner database was utilized to predict drugs that are closely linked to these 7 core genes, which could potentially act as crucial agents in overcoming radiotherapy resistance in CC.ConclusionTo summarize, the genes GJA3, TMEM38A, ID4, CDHR1, SLC10A4, KCNG1, and HMGCS2 were found to be closely correlated with the sensitivity of CC to radiotherapy. Notably, TMEM38A, a mitochondrial gene, exhibited the highest degree of correlation, indicating its potential as a crucial biomarker for the modulation of radiotherapy sensitivity in CC.</p