17 research outputs found

    Hotspots for social and ecological impacts from freshwater stress and storage loss

    Get PDF
    Humans and ecosystems are deeply connected to, and through, the hydrological cycle. However, impacts of hydrological change on social and ecological systems are infrequently evaluated together at the global scale. Here, we focus on the potential for social and ecological impacts from freshwater stress and storage loss. We find basins with existing freshwater stress are drying (losing storage) disproportionately, exacerbating the challenges facing the water stressed versus non-stressed basins of the world. We map the global gradient in social-ecological vulnerability to freshwater stress and storage loss and identify hotspot basins for prioritization (n = 168). These most-vulnerable basins encompass over 1.5 billion people, 17% of global food crop production, 13% of global gross domestic product, and hundreds of significant wetlands. There are thus substantial social and ecological benefits to reducing vulnerability in hotspot basins, which can be achieved through hydro-diplomacy, social adaptive capacity building, and integrated water resources management practices

    Integrating the Water Planetary Boundary With Water Management From Local to Global Scales

    Get PDF
    The planetary boundaries framework defines the "safe operating space for humanity" represented by nine global processes that can destabilize the Earth System if perturbed. The water planetary boundary attempts to provide a global limit to anthropogenic water cycle modifications, but it has been challenging to translate and apply it to the regional and local scales at which water problems and management typically occur. We develop a cross-scale approach by which the water planetary boundary could guide sustainable water management and governance at subglobal contexts defined by physical features (e.g., watershed or aquifer), political borders (e.g., city, nation, or group of nations), or commercial entities (e.g., corporation, trade group, or financial institution). The application of the water planetary boundary at these subglobal contexts occurs via two approaches: (i) calculating fair shares, in which local water cycle modifications are compared to that context's allocation of the global safe operating space, taking into account biophysical, socioeconomic, and ethical considerations; and (ii) defining a local safe operating space, in which interactions between water stores and Earth System components are used to define local boundaries required for sustaining the local water system in stable conditions, which we demonstrate with a case study of the Cienaga Grande de Santa Marta wetlands in Colombia. By harmonizing these two approaches, the water planetary boundary can ensure that water cycle modifications remain within both local and global boundaries and complement existing water management and governance approaches

    GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models

    Get PDF
    Continental- to global-scale hydrologic and land surface models increasingly include representations of the groundwater system. Such large-scale models are essential for examining, communicating, and understanding the dynamic interactions between the Earth system above and below the land surface as well as the opportunities and limits of groundwater resources. We argue that both large-scale and regional-scale groundwater models have utility, strengths, and limitations, so continued modeling at both scales is essential and mutually beneficial. A crucial quest is how to evaluate the realism, capabilities, and performance of large-scale groundwater models given their modeling purpose of addressing large-scale science or sustainability questions as well as limitations in data availability and commensurability. Evaluation should identify if, when, or where large-scale models achieve their purpose or where opportunities for improvements exist so that such models better achieve their purpose. We suggest that reproducing the spatiotemporal details of regional-scale models and matching local data are not relevant goals. Instead, it is important to decide on reasonable model expectations regarding when a large-scale model is performing “well enough” in the context of its specific purpose. The decision of reasonable expectations is necessarily subjective even if the evaluation criteria are quantitative. Our objective is to provide recommendations for improving the evaluation of groundwater representation in continental- to global-scale models. We describe current modeling strategies and evaluation practices, and we subsequently discuss the value of three evaluation strategies: (1) comparing model outputs with available observations of groundwater levels or other state or flux variables (observation-based evaluation), (2) comparing several models with each other with or without reference to actual observations (model-based evaluation), and (3) comparing model behavior with expert expectations of hydrologic behaviors in particular regions or at particular times (expert-based evaluation). Based on evolving practices in model evaluation as well as innovations in observations, machine learning, and expert elicitation, we argue that combining observation-, model-, and expert-based model evaluation approaches, while accounting for commensurability issues, may significantly improve the realism of groundwater representation in large-scale models, thus advancing our ability for quantification, understanding, and prediction of crucial Earth science and sustainability problems. We encourage greater community-level communication and cooperation on this quest, including among global hydrology and land surface modelers, local to regional hydrogeologists, and hydrologists focused on model development and evaluation

    Developing a sustainability science approach for water systems

    No full text
    We convened a workshop to enable scientists who study water systems from both social science and physical science perspectives to develop a shared language. This shared language is necessary to bridge a divide between these disciplines’ different conceptual frameworks. As a result of this workshop, we argue that we should view socio-hydrological systems as structurally co-constituted of social, engineered, and natural elements and study the “characteristic management challenges” that emerge from this structure and reoccur across time, space, and socioeconomic contexts. This approach is in contrast to theories that view these systems as separately conceptualized natural and social domains connected by bi-directional feedbacks, as is prevalent in much of the water systems research arising from the physical sciences. A focus on emergent characteristic management challenges encourages us to go beyond searching for evidence of feedbacks and instead ask questions such as: What types of innovations have successfully been used to address these challenges? What structural components of the system affect its resilience to hydrological events and through what mechanisms? Are there differences between successful and unsuccessful strategies to solve one of the characteristic management challenges? If so, how are these differences affected by institutional structure and ecological and economic contexts? To answer these questions, social processes must now take center stage in the study and practice of water management. We also argue that water systems are an important class of coupled systems with relevance for sustainability science because they are particularly amenable to the kinds of systematic comparisons that allow knowledge to accumulate. Indeed, the characteristic management challenges we identify are few in number and recur over most of human history and in most geographical locations. This recurrence should allow us to accumulate knowledge to answer the above questions by studying the long historical record of institutional innovations to manage water systems

    The Water Planetary Boundary: Interrogation and Revision

    Get PDF
    The planetary boundaries framework proposes quantified guardrails to human modification of global environmental processes that regulate the stability of the planet and has been considered in sustainability science, governance, and corporate management. However, the planetary boundary for human freshwater use has been critiqued as a singular measure that does not reflect all types of human interference with the complex global water cycle and Earth System. We suggest that the water planetary boundary will be more scientifically robust and more useful in decision-making frameworks if it is redesigned to consider more specifically how climate and living ecosystems respond to changes in the different forms of water on Earth: atmospheric water, frozen water, groundwater, soil moisture, and surface water. This paper provides an ambitious scientific road map to define a new water planetary boundary consisting of sub-boundaries that account for a variety of changes to the water cycle

    The Water Planetary Boundary: Interrogation and Revision

    Get PDF
    The planetary boundaries framework proposes quantified guardrails to human modification of global environmental processes that regulate the stability of the planet and has been considered in sustainability science, governance, and corporate management. However, the planetary boundary for human freshwater use has been critiqued as a singular measure that does not reflect all types of human interference with the complex global water cycle and Earth System. We suggest that the water planetary boundary will be more scientifically robust and more useful in decision-making frameworks if it is redesigned to consider more specifically how climate and living ecosystems respond to changes in the different forms of water on Earth: atmospheric water, frozen water, groundwater, soil moisture, and surface water. This paper provides an ambitious scientific road map to define a new water planetary boundary consisting of sub-boundaries that account for a variety of changes to the water cycle

    Developing a sustainability science approach for water systems

    Get PDF
    We convened a workshop to enable scientists who study water systems from both social science and physical science perspectives to develop a shared language. This shared language is necessary to bridge a divide between these disciplines’ different conceptual frameworks. As a result of this workshop, we argue that we should view socio-hydrological systems as structurally co-constituted of social, engineered, and natural elements and study the “characteristic management challenges” that emerge from this structure and reoccur across time, space, and socioeconomic contexts. This approach is in contrast to theories that view these systems as separately conceptualized natural and social domains connected by bi-directional feedbacks, as is prevalent in much of the water systems research arising from the physical sciences. A focus on emergent characteristic management challenges encourages us to go beyond searching for evidence of feedbacks and instead ask questions such as: What types of innovations have successfully been used to address these challenges? What structural components of the system affect its resilience to hydrological events and through what mechanisms? Are there differences between successful and unsuccessful strategies to solve one of the characteristic management challenges? If so, how are these differences affected by institutional structure and ecological and economic contexts? To answer these questions, social processes must now take center stage in the study and practice of water management. We also argue that water systems are an important class of coupled systems with relevance for sustainability science because they are particularly amenable to the kinds of systematic comparisons that allow knowledge to accumulate. Indeed, the characteristic management challenges we identify are few in number and recur over most of human history and in most geographical locations. This recurrence should allow us to accumulate knowledge to answer the above questions by studying the long historical record of institutional innovations to manage water systems

    Beam Test Performance Studies of CMS Phase-2 Outer Tracker Module Prototypes

    No full text
    International audienceA new tracking detector will be installed as part of the Phase-2 upgrade of the CMS detector for the high-luminosity LHC era. This tracking detector includes the Inner Tracker, equipped with silicon pixel sensor modules, and the Outer Tracker, consisting of modules with two parallel stacked silicon sensors. The Outer Tracker front-end ASICs will be able to correlate hits from charged particles in these two sensors to perform on-module discrimination of transverse momenta pTp_\mathrm{T}. The pTp_\mathrm{T} information is generated at a frequency of 40 MHz and will be used in the Level-1 trigger decision of CMS. Prototypes of the so-called 2S modules were tested at the Test Beam Facility at DESY Hamburg between 2019 and 2020. These modules use the final front-end ASIC, the CMS Binary Chip (CBC), and for the first time the Concentrator Integrated Circuit (CIC), optical readout and on-module power conversion. In total, seven modules were tested, one of which was assembled with sensors irradiated with protons. An important aspect was to show that it is possible to read out modules synchronously. A cluster hit efficiency of about 99.75% was achieved for all modules. The CBC pTp_\mathrm{T} discrimination mechanism has been verified to work together with the CIC and optical readout. The measured module performance meets the requirements for operation in the upgraded CMS tracking detector
    corecore