5 research outputs found

    Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites

    Full text link
    Wound dressings are designed to support the wound bed and protect it from the factors that may delay or impede its healing such as contaminations and moisture-loss, thereby facilitating and accelerating the healing process. The materials used to prepare wound dressings include natural and synthetic polymers, as well as their combinations, in the forms of films, sponges and hydrogels. Polysaccharides are naturally-occurring polymers that have been extensively used as wound dressing materials. Homopolysaccharides are a class of polysaccharides consist of only one type of monosaccharide. The current review intends to overview the studies in which wound dressings from naturally-occurring polymers, based on homopolysaccharides, were prepared and evaluated. Homopolysaccharides such as cellulose, chitosan, chitin, pullulan, starch and β-glucan were considered

    Ovalbumin lipid core peptide vaccines and their CD4+ and CD8+ T cell responses

    Full text link
    The lipid core peptide (LCP) system has successfully been used in development of peptide-based vaccines against cancer and infectious diseases (such as group A streptococcal infection). CD8 T cells are important targets for vaccines, however developing a vaccine that activates long-lasting immunity has proven challenging. The ability of LCP vaccines to activate antigen-specific CD8 and/or CD4 T cell responses was tested using compounds that contained two or four copies of OVA and/or OVA peptides conjugated to LCP, which are recognised by OTI (CD8 specific) and OTII (CD4 specific) T cells, respectively. The LCP-ovalbumin vaccines developed in this study were synthesised in 30% yields and showed no significant haemolytic effect on red blood cells (below 4% haemolysis when tested with compounds at up to 100μM concentrations). Promising in vivo data in mice suggested that this LCP-ovalbumin vaccine system could act as a novel and potent vehicle for the stimulation of robust antigen-specific CD8 T cell responses

    Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture

    Get PDF
    In the past decade, there has been fast-growing interest among researchers to discover bioactive peptides from edible insects and to evaluate their potential applications in the management of human, livestock, and plant health. This review summarizes current knowledge of insect-derived peptides and their potential role in tackling human health issues and solving agriculture problems by protecting crops and livestock against their pathogens. Numerous bioactive peptides have been identified from edible insect species, including peptides that were enzymatically liberated from insect proteins and endogenous peptides that occur naturally in insects. The peptides exhibited diverse bioactivities, encompassing antioxidant, anti-angiotensin-converting enzyme, anti-dipeptidyl peptidase-IV, anti-glucosidase, anti-lipase, anti-lipoxygenase, anti-cyclooxygenase, anti-obesity, and hepatoprotective activities. Such findings point to their potential contribution to solving human health problems related to inflammation, free radical damage, diabetes, hypertension, and liver damage, among others. Although most of the experiments were performed in vitro, evidence for the in vivo efficacy of some peptides is emerging. Evidence of the protective effects of insect-derived endogenous antimicrobial peptides in combating farm animal and plant pathogens is available. The ability of insect-derived endogenous neuropeptides to protect plants against herbivorous insects has been demonstrated as well. Nevertheless, the potency of peptides identified from insect protein hydrolysates in modulating livestock and plant health remains a knowledge gap to be filled.ISSN:1420-304

    Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture

    Full text link
    In the past decade, there has been fast-growing interest among researchers to discover bioactive peptides from edible insects and to evaluate their potential applications in the management of human, livestock, and plant health. This review summarizes current knowledge of insect-derived peptides and their potential role in tackling human health issues and solving agriculture problems by protecting crops and livestock against their pathogens. Numerous bioactive peptides have been identified from edible insect species, including peptides that were enzymatically liberated from insect proteins and endogenous peptides that occur naturally in insects. The peptides exhibited diverse bioactivities, encompassing antioxidant, anti-angiotensin-converting enzyme, anti-dipeptidyl peptidase-IV, anti-glucosidase, anti-lipase, anti-lipoxygenase, anti-cyclooxygenase, anti-obesity, and hepatoprotective activities. Such findings point to their potential contribution to solving human health problems related to inflammation, free radical damage, diabetes, hypertension, and liver damage, among others. Although most of the experiments were performed in vitro, evidence for the in vivo efficacy of some peptides is emerging. Evidence of the protective effects of insect-derived endogenous antimicrobial peptides in combating farm animal and plant pathogens is available. The ability of insect-derived endogenous neuropeptides to protect plants against herbivorous insects has been demonstrated as well. Nevertheless, the potency of peptides identified from insect protein hydrolysates in modulating livestock and plant health remains a knowledge gap to be filled
    corecore