77 research outputs found

    Differential response of barrier island dune grasses to species interactions and burial

    Get PDF
    Barrier islands are at the forefront of storms and sea-level rise. High disturbance regimes and sediment mobility make these systems sensitive and dynamic. Island foredunes are protective structures against storm-induced overwash that are integrally tied to dune grasses via biogeomorphic feedbacks. Shifts in dune grass dominance could influence dune morphology and susceptibility to overwash, altering island stability. In a glasshouse study, two dune grasses, Ammophila breviligulata and Uniola paniculata, were planted together and subjected to a 20 cm burial to quantify morphological and physiological responses. Burial had positive effects on both plants as indicated by increased electron transport rate and total biomass. Ammophila breviligulata performance declined when planted with U. paniculata. Uniola paniculata was not affected when planted with A. breviligulata but did have higher water use efficiency and nitrogen use efficiency. Planted in mixture, differential reallocation of biomass occurred between species potentially altering resource acquisition further. As U. paniculata migrates into A. breviligulata dominated habitat and A. breviligulata performance diminishes, biotic interactions between these and other species may affect dune formation and community structure. Our study emphasizes the importance of studying biotic interactions alongside naturally occurring abiotic drivers

    Functional traits of expanding, thicket-forming shrubs: contrasting strategies between exotic and native species

    Get PDF
    Woody expansion has been documented for decades in many different systems globally, often yielding vast changes in ecosystem functioning. While causes and consequences of woody expansion have been well documented, few studies have addressed plant functional traits that promote dramatic and rapid expansion in range. Our objectives were to investigate plant functional traits that contribute to the colonization, rapid expansion, and thicket formation of an invasive, N-fixing shrub, Elaeagnus umbellata Thunb. (Elaeagnaceae), and a native, N-fixing shrub Morella cerifera (L.) Small (Myricaceae) and compare to native, sympatric, non-expanding shrub species. Quantified functional traits included morphological (e.g., specific leaf area, leaf area) and physiological characteristics (e.g., electron transport rate, hydraulic conductivity) and were linked to two primary resources: light and water, which directly influence plant growth. Elaeagnus umbellata and M. cerifera rely on different strategies to maximize carbon gain, yet resulting physiological efficiency is similar. Elaeagnus umbellata invests a substantial amount of energy into growth during a short amount of time (i.e., deciduous growing season), using an acquisitive trait strategy to outcompete co-occurring woody species, while M. cerifera is productive year-round and uses a combination of conservative and acquisitive traits to outcompete co-occurring woody species. The majority of quantified functional traits of E. umbellata and several of M. cerifera are indicative of efficient light capture, utilization, and internal water movement. These factors contribute to rapid range expansion and thicket formation by promoting enhanced productivity while simultaneously inhibiting colonization and expansion of co-occurring species. Suites of functional traits are important for expansive success and thicket formation, yet differences in functional traits represent alternative strategies for colonization, rapid expansion, and thicketization

    Seasonal facilitative and competitive trade‐offs between shrub seedlings and coastal grasses

    Get PDF
    Shrub expansion is occurring in grasslands globally and may be impacted by the balance of competition and facilitation with existing grasses. Along the mid‐Atlantic and Gulf coasts, the native shrub Morella cerifera (wax myrtle) is rapidly expanding and displacing other native coastal species. Recent research suggests that much of this expansion is due to warming winter temperatures, as temperatures below −15°C kill M. cerifera. The objective of this project was to understand the importance of species interactions with grasses on the growth and physiology of M. cerifera at the seedling life stage through both field and laboratory experiments. In the field, grasses were removed around seedlings and microclimate and shrub physiology and growth were measured. Seeds and seedlings were experimentally frozen to measure the freeze tolerance at both life stages. We found that grasses provided ~1.3°C insulation to shrubs during winter. A freezing threshold for M. cerifera seedlings was experimentally found between −6°C and −11°C, but seeds remained viable after being frozen to the coldest ecologically relevant temperatures. Seedlings competed for light with grasses during warm months and grew more where grasses were clipped, revealing a trade‐off between winter insulation and summer light competition. Morella cerifera exhibits ecosystem engineering at the seedling stage by significantly reducing summer maximum temperatures. When seedlings are very young (less than one year), grasses appear to improve germination and seedling survival. These phenomena enable rapid expansion of M. cerifera across the landscape and likely inform shrub expansion mechanisms in other systems. Although seedlings are small and relatively vulnerable, this life stage appears to have significant implications for ecosystem trajectory in grasslands undergoing shrub encroachment

    Plant functionality across an environmental gradient

    Get PDF
    Community assemblages provide insight into ecosystem processes, both spatially and temporally. They interact with biotic and abiotic factors that vary with habitat structure, influencing community composition. Ecological theory demonstrates that species have the potential for a wide fundamental niche, but habitat range may be restricted by factors exposed to species in their realized niche. In barrier island ecosystems, edaphic and environmental characteristics (e.g. elevation and distance to shoreline) are major drivers determining where and how plant communities establish. Physical stressors, such as salt stress and drought influence community grouping and can alter plant function within the environment. With projected increases in sea level rise and storm disturbance it is important to understand how plant communities are organized across barrier islands, as most studies are limited to dune habitats and not inland plant communities. I analyzed plant communities across environmental gradients on a Virginia barrier island from dune to marsh. I established transects on Hog Island and assessed soil characteristics (i.e. carbon, nitrogen, pH), species composition, percent cover and specific leaf area. Elevation and distance to shoreline were obtained using recent Lidar imagery. Bray-Curtis ordination showed that position in landscape is an important driver in structuring dominant species such as the grasses Ammophila breviligulata, Spartina patens, and S. alterniflora. Elevation (r = -0.511) and distance to shoreline (r = 0.551) both show relationships with species composition and distribution across the island. Elevation was important in structuring dominant community types (i.e. dune building and marsh plants). Mantel test was used to determine if relationship exists between species cover and measured edaphic/environmental factors (r = 0.299, p \u3e 0.0001). Percent carbon found in soil within plots was weakly related with distance to the inner portion of the island (r = 0.56). This reflects biotic processes that occur in interior portions of the island. There was no obvious relationship with percent nitrogen due to extremely low levels across the ecosystem. Understanding community structure across coastal ecosystems is necessary for predicting how shorelines and interior communities will be affected with projected sea level rise and increases in storm frequencies. An updated understanding of how biotic and abiotic drivers of community composition will provide information into predictive modeling of plant community and ecosystem level responses to change.https://scholarscompass.vcu.edu/uresposters/1219/thumbnail.jp

    Topography and disturbance influence trait‐based composition and productivity of adjacent habitats in a coastal system

    Get PDF
    Coastal systems experience frequent disturbance and multiple environmental stressors over short spatial and temporal scales. Investigating functional traits in coastal systems has the potential to inform how variation in disturbance frequency and environmental variables influence differences in trait‐based community composition and ecosystem function. Our goals were to (1) quantify trait‐based communities on two barrier islands divergent in topography and long‐term disturbance response and (2) determine relationships between community trait‐based composition and ecosystem productivity. We hypothesized that locations documented with high disturbance would have habitats with similar environmental conditions and trait‐based communities, with the opposite relationship in low‐disturbance locations. Furthermore, we expected higher productivity and lower site‐to‐site variation with low disturbance. Functional traits, biomass, and environmental metrics (soil salinity, elevation, and distance to shoreline) were collected and analyzed for two habitat types (dune and swale) on two Virginia barrier islands. Our results show that trait‐based community composition differed among habitat types and was related to disturbance. Habitats exhibited more similarity on the high‐disturbance island in both trait‐based composition and environmental variables. Conversely, the low‐disturbance island habitats were more dissimilar. We found the habitat with the lowest disturbance had the highest ecosystem productivity and had trait‐based communities indicative of highly competitive environments, while the high‐disturbance trait‐based communities were influenced by traits that indicate rapid recovery and growth. Site‐to‐site variation was similar in all dune habitats but differed among inter‐island swale habitats that varied in disturbance. These results highlight the importance of incorporating trait‐based analyses when approaching questions about community structure and ecosystem productivity in disturbance‐mediated habitats, such as coastal systems

    Decreased temperature variance associated with biotic composition enhances coastal shrub encroachment

    Get PDF
    Regime shift from grasslands to shrub-dominated landscapes occur worldwide driven by altered land-use and climate change, affecting landscape function, biodiversity, and productivity. Warming winter temperatures are a main driver of expansion of the native, evergreen shrub, Morella cerifera, in coastal landscapes. Shrub establishment in these habitats alters microclimate, but little is known about seasonal differences and microclimate variance. We assessed influence of shrubs on microclimate variance, community composition, and community physiological functioning across three vegetation zones: grass, transitional, and shrub in a coastal grassland. Using a novel application of a time-series analysis, we interpret microclimatic variance modification and elucidate mechanisms of shrub encroachment at the Virginia Coast Reserve, Long-Term Ecological Research site. As shrub thickets form, diversity is reduced with little grass/forb cover, while transpiration and annual productivity increase. Shrub thickets significantly reduced temperature variance with a positive influence of one day on the next in maximum air, minimum air, and maximum ground temperature. We also show that microclimatic temperature moderation reduces summer extreme temperatures in transition areas, even before coalescence into full thickets. Encroachment of Morella cerifera on the Virginia barrier islands is driven by reduced local exposure to cold temperatures and enhanced by abiotic microclimatic modification and biotic physiological functioning. This shift in plant community composition from grassland to shrub thicket alters the role of barrier islands in productivity and can have impacts on the natural resilience of the islands

    Interaction of Seed Dispersal and Environmental Filtering Affects Woody Encroachment Patterns in Coastal Grassland

    Get PDF
    Encroachment of woody plants into grasslands has occurred worldwide and includes coastal ecosystems. This conversion process is mediated by seed dispersal patterns, environmental filtering, and biotic interactions. As spatiotemporally heterogeneous, harsh environments, barrier islands present a unique set of challenges for dispersal and establishment. Environmental conditions act as filters on dispersed seeds, thereby influencing encroachment and distribution patterns. Seldom have patterns of propagule dispersal been considered in the context of woody encroachment. We quantified dispersal and post‐dispersal processes of an encroaching woody population of Morella cerifera relative to directional rate of encroachment and observed distribution patterns on an Atlantic coastal barrier island with strong environmental filtering. We analyzed historic foredune elevation as a proxy for reduced interior environmental stress. The dispersal kernel was leptokurtic, a common characteristic of expanding populations, but rate of encroachment has slowed since 2005. Expansion pattern was related to foredune elevation, which limits encroachment below a threshold elevation. This difference between dispersal kernel behavior and encroachment rate is due to limited availability of suitable habitat for Morella and temporal variability in chlorides during the time of germination. Our results demonstrate that processes mediating seeds and seedling success must be accounted for to better understand establishment patterns of encroaching woody plants

    Exploring the Impacts of Shrub-Overwash Feedbacks in Coastal Barrier Systems With an Ecological-Morphological Model

    Get PDF
    Shrubs are common – and presently expanding – across coastal barrier interiors (the land between the foredune system and back-barrier bay), and have the potential to influence barrier morphodynamics by obstructing cross-shore overwash flow. The ecological and geomorphological consequences of ecomorphodynamic couplings of the barrier interior, however, remain largely unexplored. In this contribution, we add an ecological module of shrub expansion and mortality to a spatially-explicit exploratory model of barrier evolution (Barrier3D) to explore the effects of shrub-barrier feedbacks. In our model simulations, we find that the presence of shrubs significantly alters barrier morphology and behavior. Over timescales of decades to centuries, barriers with shrubs (relative to those without) tend to be narrower, migrate landward more slowly, and have a greater proportion of subaerial volume distributed toward the ocean-side of the barrier. Shrubs also tend to increase the likelihood of discontinuous barrier retreat, a behavior in which a barrier oscillates between periods of transgression and relative immobility, because shrubs induce prolonged periods of barrier immobility by obstructing overwash flow. However, shrubs can increase barrier vulnerability to drowning by preventing periods of transgression needed to maintain barrier elevation relative to rising sea levels. Additionally, physical barrier processes influence shrub expansion in our simulations; we find that greater dune erosion and overwash disturbance tends to slow the rate of shrub expansion across the barrier interior. Complementing recent observational studies of barrier islands in Virginia, USA, our results suggest that interior ecology can be a key component of barrier evolution on annual to centurial timescales
    • 

    corecore