9 research outputs found
The genus Thalictrum species as promising medicinal plants of the Tomsk region (Western Siberia)
The genus Thalictrum species (Ranunculaceae) are of interest for study as medicinal plants that are promising for expanding the gene pool and treating socially significant diseases. The data of the analysis of more than 100 geobotanical descriptions obtained in 2010-2017 were used to study the coenotic complexes of Thalictrum minus and Thalictrum simplex growing in Tomsk region and to determine their ecological-coenotic confinement. The aim of our research was to study the species of the genus Thalictrum growing in Tomsk region, their distribution and use in medicine, to investigate the coenotic complex, and to determine the ecological-coenotic confinement of Thalictrum minus L. and Thalictrum simplex L. growing in Tomsk region. The coenotic complex of Thalictrum minus includes 146 species. Thalictrum minus is the reserve of raw materials of Category II, which are identified in species confined to coenoses of different synanthropic degree, where they grow abundantly. The coenotic complex of Thalictrum simplex in Tomsk region includes 62 species. Thalictrum simplex is the reserve of raw materials of Category II
Biological features of high altitude rare medicinal plant species Hedysarum theinum Krasnob. in Western Siberia cultivation
The paper summarizes the results of a long-term introduction study of a rare alpine plant Hedysarum theinum Krasnob., which is widely used in medicine. We found that the species demonstrates sufficiently high seed productivity with adequate agrotechnical care under introduction conditions. Nevertheless, there were cases of a single lack of fruiting, which cannot be considered a reaction to different ecological conditions since these phenomena can also be observed in natural habitats; most likely, this is a feature of the reproductive biology of the species. The phenological characteristics, seed productivity, and seed germination of the species are given, and the range of variation in signs of the vegetative and generative spheres is established. The introduction assessment indicates high plasticity and a high degree of the species adaptation
Toxic properties and allelopathic activity of Melilotus officinalis (L.) Pall.
Melilotus officinalis (L.) Pall., known as yellow sweetclover (Fabaceae), is widely used in medicine and agriculture. At the same time, yellow sweetclover is a weed and invasive plant in Siberia. In Russia, M. officinalis is cultivated as a valuable medicinal, fodder and honey plant. Its widespread use is due to its high ecological plasticity. In recent years, an interest in cultivation of M. officinalis as a low maintenance multipurpose crop has increased in biological agriculture. The herb M. officinalis contains a rich complex of biologically active compounds. However, along with positive properties, this species, though with a rich chemical composition and high physiological activity, is toxic towards different groups of living organisms. The toxic effect of M. officinalis extracts is primarily due to the presence of coumarin. A high allelopathic activity of M. officinalis was revealed. The phytotoxic effect of herb extracts on germination of crop and weed seeds was studied in detail. Data on the fungicidal and insecticidal activity of M. officinalis were obtained. Laboratory and in situ studies showed that the aboveground part of M. officinalis is a potential source of biopesticides with a broad-spectrum effect (bioherbicidal, insecticidal and fungicidal)
Coenocomplex and ecological area of Atragene speciosa Weinm. in the Altai-Sayan mountain region
Atragene speciosa Weinm. is a valuable nootropic medicinal plant, but not abundant in nature. The coenocomplex of Atragene speciosa consists mainly of dark coniferous taiga forest. The species composition of this cenocomplex includes 324 species, 74 of which are constant. According to humidity of habitats, this species is in the mesophyte group, and, according to the abundance and salinity or nutrient status of soil, it refers to the mesotrophic group. Cattle grazing is very little or absent in the sites of its vegetation
Elemental composition of macrophytes of thermokarst lakes in Western Siberia
Relevance. Macrophytes are one of the key participants in accumulation of chemical elements in lake ecosystems, but despite this, the issue of elemental composition of macrophytes of thermokarst lakes in Western Siberia and accumulation of chemical elements relative to the sediments and pore water remains practically unexplored. The aim of the research is to describe the formation of elemental composition of macrophyte species of thermokarst lakes in the north of Western Siberia and to identify the possibility of their use in biomonitoring. The objects of research were macrophyte plants (Hippuris vulgaris L., Glyceria maxima (Hartm.) Holmb., Comarum palustre L., Ranunculus spitzbergensis Hadac, Carex aquatilis Wahlenb s. Str., Menyanthes trifoliata L.), sediments and pore waters of thermokarst lakes of the north of Western Siberia. Methods. The elemental composition of the samples was studied by inductively coupled plasma mass spectrometry (ICP/MS, Agilent Technologies, 7500 se), the concentration of anions in water samples was determined by liquid chromatography (Dionex ICS/2000), the dissolved organic carbon was defined by infrared spectroscopy TOC/VCSN, Shimadzu), the organic carbon content of the sediments was determined by infrared spectrometry (Horiba Jobin Yvon Emia/320V C/S Analyzer). Statistical processing of data was carried out using the STATISTICA 6.0 software package. Results. The coefficients of biological accumulation of chemical elements in macrophytes relative to sediments and pore water were calculated for four key thermokarst lakes. It has been shown that macronutrients (Na, Mg, Ca), some heavy metals and metalloids (Ni, Cu, Zn, Co, As, Cd), as well as B and Mo are actively accumulated in water plants of thermokarst lakes of Western Siberia. High coefficients of accumulation of heavy metals indicate a significant phytoremediation function of macrophytes in a given territory
Biogeochemistry of macrophytes, sediments and porewaters in thermokarst lakes of permafrost peatlands, western Siberia
The chemical composition of thermokarst lake ecosystem components is a crucial indicator of current climate change and permafrost thaw. Despite high importance of macrophytes in shallow permafrost thaw lakes for control of major and trace nutrients in lake water, the trace element (TE) partitioning between macrophytes and lake water and sediments in the permafrost regions remains virtually unknown. Here we sampled dominant macrophytes in thermokarst lakes of discontinuous and continuous permafrost zones in the Western Siberia Lowland (WSL) and measured major and trace elements in plant biomass, lake water, lake sediments and sediment porewater. All six plant species (Hippuris vulgaris L., Glyceria maxima (Hartm.) Holmb., Comarum palustre L., Ranunculus spitzbergensis Hadac, Carex aquatilis Wahlenb s. str., Menyanthes trifoliata L.) sizably accumulated macronutrients (Na, Mg, Ca), micronutrients (B, Mo, Nu, Cu, Zn, Co) and toxicants (As, Cd). Accumulation of other trace elements, including rare earth elements (REE), in macrophytes relative to pore waters and sediments was highly variable among species. Using miltiparametric statistics, we described the behavior of Π’Π across two permafrost zones and identified several group of elements depending on their sources in the lake ecosystems and their affinity to sediments and macrophytes. Under future climate warming and shifting the permafrost border to the north, we anticipate an increasing uptake of heavy metals and lithogenic low mobile elements such as Ti, Al, Cr, As, Cu, Fe, Ni, Ga, Zr, and REEs by macrophytes in the discontinuous permafrost zone and Ba, Zn, Pb and Cd in the continuous permafrost zone. This may eventually diminish transport of metal micronutrients and geochemical tracers from soils to lakes and rivers and further to the Arcti
Elemental composition of macrophytes of thermokarst lakes in Western Siberia
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ. Π Π°ΡΡΠ΅Π½ΠΈΡ-ΠΌΠ°ΠΊΡΠΎΡΠΈΡΡ ΡΠ²Π»ΡΡΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΊΠ»ΡΡΠ΅Π²ΡΡ
Π·Π²Π΅Π½ΡΠ΅Π² Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π² ΠΎΠ·Π΅ΡΠ½ΡΡ
ΡΠΊΠΎΡΠΈΡΡΠ΅ΠΌΠ°Ρ
, Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΡΠΎ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΎΡΡΠ°Π΅ΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΠΌ Π²ΠΎΠΏΡΠΎΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΌΠ°ΠΊΡΠΎΡΠΈΡΠΎΠ² ΡΠ΅ΡΠΌΠΎΠΊΠ°ΡΡΡΠΎΠ²ΡΡ
ΠΎΠ·Π΅Ρ ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠΉ Π‘ΠΈΠ±ΠΈΡΠΈ ΠΈ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΈΠΈ ΠΈΠΌΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΠΏΠΎΡΠΎΠ²ΠΎΠΉ Π²ΠΎΠ΄Ρ. Π¦Π΅Π»Ρ: ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° Π²ΠΈΠ΄ΠΎΠ² ΠΌΠ°ΠΊΡΠΎΡΠΈΡΠΎΠ² ΡΠ΅ΡΠΌΠΎΠΊΠ°ΡΡΡΠΎΠ²ΡΡ
ΠΎΠ·Π΅Ρ ΡΠ΅Π²Π΅ΡΠ° ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠΉ Π‘ΠΈΠ±ΠΈΡΠΈ ΠΈ Π²ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈΡ
ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² Π±ΠΈΠΎΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π΅. ΠΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΡΠΆΠΈΠ»ΠΈ ΡΠ°ΡΡΠ΅Π½ΠΈΡ-ΠΌΠ°ΠΊΡΠΎΡΠΈΡΡ (Hippuris vulgaris L., Glyceria maxima (Hartm.) Holmb., Comarum palustre L., Ranunculus spitzbergensis Hadac, Carex aquatilis Wahlenb s. str., Menyanthes trifoliata L.), Π΄ΠΎΠ½Π½ΡΠ΅ ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΏΠΎΡΠΎΠ²ΡΠ΅ Π²ΠΎΠ΄Ρ Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΡΠ΅ΡΠΌΠΎΠΊΠ°ΡΡΡΠΎΠ²ΡΡ
ΠΎΠ·Π΅Ρ ΡΠ΅Π²Π΅ΡΠ° ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠΉ Π‘ΠΈΠ±ΠΈΡΠΈ. ΠΠ΅ΡΠΎΠ΄Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ Ρ ΠΈΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΠΎΠΉ (ΠΠ‘Π/ΠΠ‘, Agilent Technologies, 7500 ΡΠ΅), ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π°Π½ΠΈΠΎΠ½ΠΎΠ² Π² ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
Π²ΠΎΠ΄Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ (Dionex ICS/2000), ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ³Π»Π΅ΡΠΎΠ΄Π° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ (TOC/VCSN, Shimadzu), ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ³Π»Π΅ΡΠΎΠ΄Π° Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ (Horiba Jobin Yvon Emia/320V C/S Analyzer). Π‘ΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ° Π΄Π°Π½Π½ΡΡ
ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠ°ΠΊΠ΅ΡΠ° ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌ STATISTICA 6.0.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π² ΠΌΠ°ΠΊΡΠΎΡΠΈΡΠ°Ρ
ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΠΏΠΎΡΠΎΠ²ΠΎΠΉ Π²ΠΎΠ΄Ρ Π±ΡΠ»ΠΈ ΡΠ°ΡΡΡΠΈΡΠ°Π½Ρ Π΄Π»Ρ ΡΠ΅ΡΡΡΠ΅Ρ
ΠΊΠ»ΡΡΠ΅Π²ΡΡ
ΡΠ΅ΡΠΌΠΎΠΊΠ°ΡΡΡΠΎΠ²ΡΡ
ΠΎΠ·Π΅Ρ. ΠΡΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π²ΠΎΠ΄Π½ΡΠΌΠΈ ΡΠ°ΡΡΠ΅Π½ΠΈΡΠΌΠΈ ΡΠ΅ΡΠΌΠΎΠΊΠ°ΡΡΡΠΎΠ²ΡΡ
ΠΎΠ·Π΅Ρ ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠΉ Π‘ΠΈΠ±ΠΈΡΠΈ Π°ΠΊΡΠΈΠ²Π½ΠΎ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡΡΡΡ ΠΌΠ°ΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΡ (Na, Mg, Ca), Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΠΆΠ΅Π»ΡΠ΅ ΠΌΠ΅ΡΠ°Π»Π»Ρ ΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΈΠ΄Ρ (Ni, Cu, Zn, Co, As, Cd), Π° ΡΠ°ΠΊΠΆΠ΅ B ΠΈ Mo. ΠΡΡΠΎΠΊΠΈΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ ΡΡΠΆΠ΅Π»ΡΡ
ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² ΠΌΠΎΠ³ΡΡ Π³ΠΎΠ²ΠΎΡΠΈΡΡ ΠΎ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΈΡΠΎΡΠ΅ΠΌΠ΅Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ-ΠΌΠ°ΠΊΡΠΎΡΠΈΡΠΎΠ² Π΄Π°Π½Π½ΠΎΠΉ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΈ.Relevance. Macrophytes are one of the key participants in accumulation of chemical elements in lake ecosystems, but despite this, the issue of elemental composition of macrophytes of thermokarst lakes in Western Siberia and accumulation of chemical elements relative to the sediments and pore water remains practically unexplored. The aim of the research is to describe the formation of elemental composition of macrophyte species of thermokarst lakes in the north of Western Siberia and to identify the possibility of their use in biomonitoring. The objects of research were macrophyte plants (Hippuris vulgaris L., Glyceria maxima (Hartm.) Holmb., Comarum palustre L., Ranunculus spitzbergensis Hadac, Carex aquatilis Wahlenb s. Str., Menyanthes trifoliata L.), sediments and pore waters of thermokarst lakes of the north of Western Siberia. Methods. The elemental composition of the samples was studied by inductively coupled plasma mass spectrometry (ICP/MS, Agilent Technologies, 7500 se), the concentration of anions in water samples was determined by liquid chromatography (Dionex ICS/2000), the dissolved organic carbon was defined by infrared spectroscopy TOC/VCSN, Shimadzu), the organic carbon content of the sediments was determined by infrared spectrometry (Horiba Jobin Yvon Emia/320V C/S Analyzer). Statistical processing of data was carried out using the STATISTICA 6.0 software package. Results. The coefficients of biological accumulation of chemical elements in macrophytes relative to sediments and pore water were calculated for four key thermokarst lakes. It has been shown that macronutrients (Na, Mg, Ca), some heavy metals and metalloids (Ni, Cu, Zn, Co, As, Cd), as well as B and Mo are actively accumulated in water plants of thermokarst lakes of Western Siberia. High coefficients of accumulation of heavy metals indicate a significant phytoremediation function of macrophytes in a given territory
Elemental composition of macrophytes of thermokarst lakes in Western Siberia
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ. Π Π°ΡΡΠ΅Π½ΠΈΡ-ΠΌΠ°ΠΊΡΠΎΡΠΈΡΡ ΡΠ²Π»ΡΡΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΊΠ»ΡΡΠ΅Π²ΡΡ
Π·Π²Π΅Π½ΡΠ΅Π² Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π² ΠΎΠ·Π΅ΡΠ½ΡΡ
ΡΠΊΠΎΡΠΈΡΡΠ΅ΠΌΠ°Ρ
, Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΡΠΎ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΎΡΡΠ°Π΅ΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΠΌ Π²ΠΎΠΏΡΠΎΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΌΠ°ΠΊΡΠΎΡΠΈΡΠΎΠ² ΡΠ΅ΡΠΌΠΎΠΊΠ°ΡΡΡΠΎΠ²ΡΡ
ΠΎΠ·Π΅Ρ ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠΉ Π‘ΠΈΠ±ΠΈΡΠΈ ΠΈ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΈΠΈ ΠΈΠΌΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΠΏΠΎΡΠΎΠ²ΠΎΠΉ Π²ΠΎΠ΄Ρ. Π¦Π΅Π»Ρ: ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° Π²ΠΈΠ΄ΠΎΠ² ΠΌΠ°ΠΊΡΠΎΡΠΈΡΠΎΠ² ΡΠ΅ΡΠΌΠΎΠΊΠ°ΡΡΡΠΎΠ²ΡΡ
ΠΎΠ·Π΅Ρ ΡΠ΅Π²Π΅ΡΠ° ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠΉ Π‘ΠΈΠ±ΠΈΡΠΈ ΠΈ Π²ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈΡ
ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² Π±ΠΈΠΎΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π΅. ΠΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΡΠΆΠΈΠ»ΠΈ ΡΠ°ΡΡΠ΅Π½ΠΈΡ-ΠΌΠ°ΠΊΡΠΎΡΠΈΡΡ (Hippuris vulgaris L., Glyceria maxima (Hartm.) Holmb., Comarum palustre L., Ranunculus spitzbergensis Hadac, Carex aquatilis Wahlenb s. str., Menyanthes trifoliata L.), Π΄ΠΎΠ½Π½ΡΠ΅ ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΏΠΎΡΠΎΠ²ΡΠ΅ Π²ΠΎΠ΄Ρ Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΡΠ΅ΡΠΌΠΎΠΊΠ°ΡΡΡΠΎΠ²ΡΡ
ΠΎΠ·Π΅Ρ ΡΠ΅Π²Π΅ΡΠ° ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠΉ Π‘ΠΈΠ±ΠΈΡΠΈ. ΠΠ΅ΡΠΎΠ΄Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ Ρ ΠΈΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΠΎΠΉ (ΠΠ‘Π/ΠΠ‘, Agilent Technologies, 7500 ΡΠ΅), ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π°Π½ΠΈΠΎΠ½ΠΎΠ² Π² ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
Π²ΠΎΠ΄Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ (Dionex ICS/2000), ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ³Π»Π΅ΡΠΎΠ΄Π° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ (TOC/VCSN, Shimadzu), ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ³Π»Π΅ΡΠΎΠ΄Π° Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ (Horiba Jobin Yvon Emia/320V C/S Analyzer). Π‘ΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ° Π΄Π°Π½Π½ΡΡ
ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠ°ΠΊΠ΅ΡΠ° ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌ STATISTICA 6.0.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π² ΠΌΠ°ΠΊΡΠΎΡΠΈΡΠ°Ρ
ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΠΎΠ½Π½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΠΏΠΎΡΠΎΠ²ΠΎΠΉ Π²ΠΎΠ΄Ρ Π±ΡΠ»ΠΈ ΡΠ°ΡΡΡΠΈΡΠ°Π½Ρ Π΄Π»Ρ ΡΠ΅ΡΡΡΠ΅Ρ
ΠΊΠ»ΡΡΠ΅Π²ΡΡ
ΡΠ΅ΡΠΌΠΎΠΊΠ°ΡΡΡΠΎΠ²ΡΡ
ΠΎΠ·Π΅Ρ. ΠΡΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π²ΠΎΠ΄Π½ΡΠΌΠΈ ΡΠ°ΡΡΠ΅Π½ΠΈΡΠΌΠΈ ΡΠ΅ΡΠΌΠΎΠΊΠ°ΡΡΡΠΎΠ²ΡΡ
ΠΎΠ·Π΅Ρ ΠΠ°ΠΏΠ°Π΄Π½ΠΎΠΉ Π‘ΠΈΠ±ΠΈΡΠΈ Π°ΠΊΡΠΈΠ²Π½ΠΎ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡΡΡΡ ΠΌΠ°ΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΡ (Na, Mg, Ca), Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΠΆΠ΅Π»ΡΠ΅ ΠΌΠ΅ΡΠ°Π»Π»Ρ ΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠΈΠ΄Ρ (Ni, Cu, Zn, Co, As, Cd), Π° ΡΠ°ΠΊΠΆΠ΅ B ΠΈ Mo. ΠΡΡΠΎΠΊΠΈΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ ΡΡΠΆΠ΅Π»ΡΡ
ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² ΠΌΠΎΠ³ΡΡ Π³ΠΎΠ²ΠΎΡΠΈΡΡ ΠΎ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΈΡΠΎΡΠ΅ΠΌΠ΅Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ-ΠΌΠ°ΠΊΡΠΎΡΠΈΡΠΎΠ² Π΄Π°Π½Π½ΠΎΠΉ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΈ.Relevance. Macrophytes are one of the key participants in accumulation of chemical elements in lake ecosystems, but despite this, the issue of elemental composition of macrophytes of thermokarst lakes in Western Siberia and accumulation of chemical elements relative to the sediments and pore water remains practically unexplored. The aim of the research is to describe the formation of elemental composition of macrophyte species of thermokarst lakes in the north of Western Siberia and to identify the possibility of their use in biomonitoring. The objects of research were macrophyte plants (Hippuris vulgaris L., Glyceria maxima (Hartm.) Holmb., Comarum palustre L., Ranunculus spitzbergensis Hadac, Carex aquatilis Wahlenb s. Str., Menyanthes trifoliata L.), sediments and pore waters of thermokarst lakes of the north of Western Siberia. Methods. The elemental composition of the samples was studied by inductively coupled plasma mass spectrometry (ICP/MS, Agilent Technologies, 7500 se), the concentration of anions in water samples was determined by liquid chromatography (Dionex ICS/2000), the dissolved organic carbon was defined by infrared spectroscopy TOC/VCSN, Shimadzu), the organic carbon content of the sediments was determined by infrared spectrometry (Horiba Jobin Yvon Emia/320V C/S Analyzer). Statistical processing of data was carried out using the STATISTICA 6.0 software package. Results. The coefficients of biological accumulation of chemical elements in macrophytes relative to sediments and pore water were calculated for four key thermokarst lakes. It has been shown that macronutrients (Na, Mg, Ca), some heavy metals and metalloids (Ni, Cu, Zn, Co, As, Cd), as well as B and Mo are actively accumulated in water plants of thermokarst lakes of Western Siberia. High coefficients of accumulation of heavy metals indicate a significant phytoremediation function of macrophytes in a given territory