4 research outputs found

    Monoclonal Antibodies Application in Lateral Flow Immunochromatographic Assays for Drugs of Abuse Detection

    No full text
    Lateral flow assays (lateral flow immunoassays and nucleic acid lateral flow assays) have experienced a great boom in a wide variety of early diagnostic and screening applications. As opposed to conventional examinations (High Performance Liquid Chromatography, Polymerase Chain Reaction, Gas chromatography-Mass Spectrometry, etc.), they obtain the results of a sample’s analysis within a short period. In resource-limited areas, these tests must be simple, reliable, and inexpensive. In this review, we outline the production process of antibodies against drugs of abuse (such as heroin, amphetamine, benzodiazepines, cannabis, etc.), used in lateral flow immunoassays as revelation or detection molecules, with a focus on the components, the principles, the formats, and the mechanisms of reaction of these assays. Further, we report the monoclonal antibody advantages over the polyclonal ones used against drugs of abuse. The perspective on aptamer use for lateral flow assay development was also discussed as a possible alternative to antibodies in view of improving the limit of detection, sensitivity, and specificity of lateral flow assays

    BRCA1 Promoter Hypermethylation in Malignant Breast Tumors and in the Histologically Normal Adjacent Tissues to the Tumors: Exploring Its Potential as a Biomarker and Its Clinical Significance in a Translational Approach

    No full text
    The hypermethylation status of the promoter region of the breast cancer 1 (BRCA1), a well-known tumor suppressor gene, has been extensively investigated in the last two decades as a potential biomarker for breast cancer. In this retrospective study, we investigated the prevalence of BRCA1 promoter methylation in 84 human breast tissues, and we correlated this epigenetic silencing with the clinical and histopathological parameters of breast cancer. We used methylation-specific PCR (MSP) to analyze BRCA1 promoter hypermethylation in 48 malignant breast tumors (MBTs), 15 normal adjacent tissues (NATs), and 21 benign breast lesions (BBLs). The results showed that BRCA1 promoter hypermethylation was higher in MBTs (20/48; 41.67%) and NATs (7/15; 46.67%) compared to BBLs (4/21; 19.05%). The high percentage of BRCA1 hypermethylation in the histologically normal adjacent tissues to the tumors (NATs) suggests the involvement of this epigenetic silencing as a potential biomarker of the early genomic instability in NATs surrounding the tumors. The detection of BRCA1 promoter hypermethylation in BBLs reinforces this suggestion, knowing that a non-negligible rate of benign breast lesions was reported to evolve into cancer. Moreover, our results indicated that the BRCA1 promoter hypermethylated group of MBTs exhibited higher rates of aggressive features, as indicated by the SBR III grade (14/19; 73.68%), elevated Ki67 levels (13/16; 81.25%), and Her2 receptor overexpression (5/20; 25%). Finally, we observed a concordance (60%) in BRCA1 promoter hypermethylation status between malignant breast tumors and their paired histologically normal adjacent tissues. This study highlights the role of BRCA1 promoter hypermethylation as a potential useful biomarker of aggressiveness in MBTs and as an early marker of genomic instability in both histological NATs and BBLs
    corecore