8 research outputs found

    A literature review addressing midwakh and e-cigarette use in the Gulf region

    No full text
    Abstract A notable decrease in conventional cigarette smoking has been witnessed on a global scale. However, this decrease has been accompanied by an equally striking global increase in the consumption of alternative tobacco products (ATPs), namely e-cigarettes and midwakh in the Arabian Gulf region. A literature review was used to outline the chemical composition of these two ATPs and review their impacts on health. The study was conducted using databases like PubMed, Google Scholar, MDPI, and WorldCat. The literature search included terms such as “e-cigarettes,” “midwakh,” “dokha,” “heath impacts,” “psychological effects,” “social influences,” and “cigarette smoking” with emphasis on literature from the Arabian Gulf region. Data shows that midwakh contains markedly high levels of tar, nicotine, and various compounds of notable effects on the human body. Similarly, it was found that e-cigarettes contain non-negligible amounts of nicotine and other chemical compounds that may not have been extensively investigated. Alarming reports of system-specific effects brought about by midwakh, and e-cigarette consumption, have been reported, although further research is needed to deduce the mechanism. We also discussed some of the social and psychological factors leading to their consumption within this population. Hence, this review raises questions around the safety of these two types of ATPs and encourages comprehensive studies globally and regionally

    The Gut Microbiome and Female Health

    No full text
    The possession of two X chromosomes may come with the risk of various illnesses, females are more likely to be affected by osteoarthritis, heart disease, and anxiety. Given the reported correlations between gut microbiome dysbiosis and various illnesses, the female gut microbiome is worthy of exploration. Herein, we discuss the composition of the female gut microbiota and its dysbiosis in pathologies affecting the female population. Using PubMed, we performed a literature search, using key terms, namely: “gut microbiome”, “estrogen”, “menopause”, “polycystic ovarian syndrome”, “pregnancy”, and “menstruation”. In polycystic ovarian syndrome (PCOS), the abundance of Bacteroides vulgatus, Firmicutes, Streptococcus, and the ratio of Escherichia/Shigella was found to be increased while that of Tenericutes ML615J-28, Tenericutes 124-7, Akkermansia, Ruminococcaceae, and Bacteroidetes S24-7 was reduced. In breast cancer, the abundance of Clostridiales was enhanced, while in cervical cancer, Prevotella, Porphyromonas, and Dialister were enhanced but Bacteroides, Alistipes, and members of Lachnospiracea, were decreased. In ovarian cancer, Prevotella abundance was increased. Interestingly, the administration of Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus reuteri, and Lactobacillus fermentum ameliorated PCOS symptoms while that of a mix of Bifidobacterium lactis W51, Bifidobacterium bifidum W23, Lactobacillus brevis W63, Bifidobacterium lactis W52, Lactobacillus salivarius W24, Lactobacillus acidophilus W37, Lactococcus lactis W19, Lactobacillus casei W56, and Lactococcus lactis W58 alleviated vascular malfunction and arterial stiffness in obese postmenopausal women, and finally, while further research is needed, Prevotella maybe protective against postmenopausal bone mass loss. As several studies report the therapeutic potential of probiotics and since the gut microbiota of certain female pathological states has been relatively characterized, we speculate that the administration of certain bacterial species as probiotics is warranted, as novel independent or adjunct therapies for various female pathologies

    Sappinia spp.: An update

    No full text
    Sappinia is a free-living amoeba isolated from soil, dead plant material, freshwater, ponds, water supplies, surface water and the faecal material of various organisms such as cows, bats, reptiles, King penguin, and even humans. Of note, Sappinia was reported to be the causative agent in a case of non-granulomatous amoebic encephalitis, in an immunocompetent male who was otherwise healthy. Since only one case has been described, there is not much information regarding the pathogenesis of Sappinia. Nonetheless, the rise in temperatures accompanying global warming is predicted to increase numbers of infections caused by free-living amoeba, and this may include Sappinia. Worryingly, Sappinia has also been reported to harbour fungal and bacterial endosymbionts. Since little is known about the pathogenesis of Sappinia and its species, prospective studies should focus on deducing its pathology. Additionally, Sappinia should be inspected for harbouring any bacteria or fungi with medical relevance to humans. Herein, we review the taxonomy, biology, ecological distribution, etiology, and pathogenesis of Sappinia. Prospective studies should be focused on Sappinia as well as other free-living amoebae, comprising their pathogenesis, and in developing preventative methods as well as treatments. This is especially important, given the rise in water shortages globally and reliance of storing water in tanks, where such microorganisms may propagate

    Antiamoebic properties of salicylic acid-based deep eutectic solvents for the development of contact lens disinfecting solutions against Acanthamoeba

    No full text
    Acanthamoeba castellanii is a protist pathogen that can cause sight-threatening keratitis and a fatal infection of the central nervous system, known as granulomatous amoebic encephalitis. In this study, effects of five malonic acid and salicylic acid-based deep eutectic solvents (DES) on A. castellanii were investigated. These are salicylic acid-trioctylphosphine (DES 1), salicylic acid- trihexylamine (DES 2), salicylic acid-trioctylamine (DES 3), malonic acid-trioctylphosphine (DES 4) and malonic acid-trihexylamine (DES 5). The experiments were done by performing amoebicidal, encystment, excystment, cytopathogenicity, and cytotoxicity assays. At micromolar dosage, the solvents DES 2 and DES 3 displayed significant amoebicidal effects (P &lt; 0.05), inhibited encystment and excystment, undermined the cell-mediated cytopathogenicity of A. castellanii, and also displayed minimal cytotoxicity to human cells. Conversely, the chemical components of these solvents: salicylic acid, trihexylamine, and trioctylamine showed minimal effects when tested individually. These results are very promising and to the best of our knowledge, are reported for the first time on the effects of deep eutectic solvents on amoebae. These results can be applied in the development of new formulations of novel contact lens disinfectants against Acanthamoeba castellanii.</p

    Antiamoebic properties of salicylic acid-based deep eutectic solvents for the development of contact lens disinfecting solutions against Acanthamoeba

    No full text
    Acanthamoeba castellanii is a protist pathogen that can cause sight-threatening keratitis and a fatal infection of the central nervous system, known as granulomatous amoebic encephalitis. In this study, effects of five malonic acid and salicylic acid-based deep eutectic solvents (DES) on A. castellanii were investigated. These are salicylic acid-trioctylphosphine (DES 1), salicylic acid- trihexylamine (DES 2), salicylic acid-trioctylamine (DES 3), malonic acid-trioctylphosphine (DES 4) and malonic acid-trihexylamine (DES 5). The experiments were done by performing amoebicidal, encystment, excystment, cytopathogenicity, and cytotoxicity assays. At micromolar dosage, the solvents DES 2 and DES 3 displayed significant amoebicidal effects (P &lt; 0.05), inhibited encystment and excystment, undermined the cell-mediated cytopathogenicity of A. castellanii, and also displayed minimal cytotoxicity to human cells. Conversely, the chemical components of these solvents: salicylic acid, trihexylamine, and trioctylamine showed minimal effects when tested individually. These results are very promising and to the best of our knowledge, are reported for the first time on the effects of deep eutectic solvents on amoebae. These results can be applied in the development of new formulations of novel contact lens disinfectants against Acanthamoeba castellanii.</p

    Antibacterial Properties of Ethacridine Lactate and Sulfmethoxazole Loaded Functionalized Graphene Oxide Nanocomposites

    No full text
    The emergence of drug-resistant bacterial strains that reduce the effectiveness of antimicrobial agents has become a major ongoing health concern in recent years. It is therefore necessary to find new antibacterials with broad-spectrum activity against both Gram-positive and Gram-negative bacteria, and/or to use nanotechnology to boost the potency of already available medications. In this research, we examined the antibacterial efficacy of sulfamethoxazole and ethacridine lactate loaded two-dimensional glucosamine functionalized graphene-based nanocarriers against a range of bacterial isolates. Graphene oxide was first functionalized with glucosamine, which as a carbohydrate moiety can render hydrophilic and biocompatible characters to the GO surface, and subsequently loaded with ethacridine lactate and sulfamethoxazole. The resulting nanoformulations had distinct, controllable physiochemical properties. By analyzing the formulation using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (PXRD), a thermogravimetric analysis (TGA), zetasizer, and a morphological analysis using Scanning Electron Microscopy and Atomic Force Microscopy, researchers were able to confirm the synthesis of nanocarriers. Both nanoformulations were tested against Gram-negative bacteria, including Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica, as well as Gram-positive bacteria, including Bacillus cereus, Streptococcus pyogenes, and Streptococcus pneumoniae. Importantly, ethacridine lactate and its nanoformulations exhibited significant antibacterial properties against all bacteria tested in this study. When tested for minimum inhibitory concentration (MIC), the results were remarkable and revealed that ethacridine lactate presented MIC90 at 9.7 µg/mL against S. enteric, and MIC90 at 6.2 µg/mL against B. cereus. Notably, ethacridine lactate and its nanoformulations showed limited toxicity effects against human cells using lactate dehydrogenase assays. Overall, the results revealed that ethacridine lactate and its nanoformulations possess antibacterial activities against various Gram-negative and Gram-positive bacteria and that nanotechnology can be employed for the targeted delivery of effective drugs without harming the host tissue

    Antiamoebic Properties of Ceftriaxone and Zinc-Oxide&ndash;Cyclodextrin-Conjugated Ceftriaxone

    No full text
    Acanthamoeba castellanii is a ubiquitous free-living amoeba capable of instigating keratitis and granulomatous amoebic encephalitis in humans. Treatment remains limited and inconsistent. Accordingly, there is a pressing need for novel compounds. Nanotechnology has been gaining attention for enhancing drug delivery and reducing toxicity. Previous work has shown that various antibiotic classes displayed antiamoebic activity. Herein, we employed two antibiotics: ampicillin and ceftriaxone, conjugated with the nanocarrier zinc oxide and &beta;-cyclodextrin, and tested them against A. castellanii via amoebicidal, amoebistatic, encystment, excystment, cytopathogenicity, and cytotoxicity assays at a concentration of 100 &mu;g/mL. Notably, zinc oxide &beta;-cyclodextrin ceftriaxone significantly inhibited A. castellanii growth and cytopathogenicity. Additionally, both zinc oxide &beta;-cyclodextrin ceftriaxone and ceftriaxone markedly inhibited A. castellanii encystment. Furthermore, all the tested compounds displayed negligible cytotoxicity. However, minimal anti-excystment or amoebicidal effects were observed for the compounds. Accordingly, this novel nanoconjugation should be employed in further studies in hope of discovering novel anti-Acanthamoeba compounds

    Structure-based drug design of DNA minor groove binders and evaluation of their antibacterial and anticancer properties

    No full text
    Antimicrobial and chemotherapy resistance are escalating medical problem of paramount importance. Yet, research for novel antimicrobial and anticancer agents remains lagging behind. With their reported medical applications, DNA minor groove binders (MGBs) are worthy of exploration. In this study, the approach of structure-based drug design was implemented to generate 11 MGB compounds including a novel class of bioactive alkyne-linked MGBs. The NCI screening protocol was utilized to evaluate the antitumor activity of the target MGBs. Furthermore, a variety of bactericidal, cytopathogenicity, MIC90, and cytotoxicity assays were carried out using these MGBs against 6 medically relevant bacteria: Salmonella enterica, Escherichia coli, Serratia marcescens, Bacillus cereus, Streptococcus pneumoniae and Streptococcus pyogenes. Moreover, molecular docking, molecular dynamic simulations, DNA melting, and isothermal titration calorimetry (ITC) analyses were utilized to explore the binding mode and interactions between the most potent MGBs and the DNA duplex d(CGACTAGTCG)2. NCI results showed that alkyne-linked MGBs (26 &amp; 28) displayed the most significant growth inhibition among the NCI-60 panel. In addition, compounds MGB3, MGB4, MGB28, and MGB32 showed significant bactericidal effects, inhibited B. cereus and S. enterica-mediated cytopathogenicity, and exhibited low cytotoxicity. MGB28 and MGB32 demonstrated significant inhibition of S. pyogenes, whereas MGB28 notably inhibited S. marcescens and all four minor groove binders significantly inhibited B. cereus. The ability of these compounds to bind with DNA and distort its groove dimensions provides the molecular basis for the allosteric perturbation of proteins-DNA interactions by MGBs. This study shed light on the mechanism of action of MGBs and revealed the important structural features for their antitumor and antibacterial activities, which are important to guide future development of MGB derivatives as novel antibacterial and anticancer agents.</p
    corecore