8 research outputs found

    Biodegradation of phenanthrene in an anaerobic batch reactor: growth kinetics

    Get PDF
    The purpose of the present research was to demonstrate the ability of mixed consortia of microorganisms to degrade high concentrations of phenanthrene (PHE) as the sole carbon source. Batch experiments were carried out by the induction of mineral salt medium containing PHE to the seed culture and monitoring PHE biodegradation. The microbial propagation was conducted using PHE concentrations in the range of 20 to 100 mg/l. The microbial growth on PHE was defined based on Monod and modified Logistic rate models. The kinetic studies revealed that maximum specific growth rates (μm) for PHE concentrations of 20, 50 and 100 mg/l were 0.12, 0.23 and 0.035 h-1, respectively. The doubling times for microbial population in PHE concentrations of 20, 50 and 100 mg/l were 13, 15 and 17.5 h, respectively. Also, maximum cell dry weight (xm) of 54.23 mg/l was achieved, while the inhibition coefficient was 0.023 h-1. It was observed that the experimental data were well represented by the proposed models. It was also found that the biodegradation of PHE was successfully performed by the isolated strains

    Influence of thermal and chemical pretreatment on structural stability of granular sludge for high-rate hydrogen production in an UASB bioreactor

    No full text
    Fermentation of organic waste materials presents an alternate route instead of photosynthetic and chemical routes for hydrogen production. Low yield of biohydrogen production is the major challenge in the fermentative hydrogen-producing technology. Improvement of fermentation process by various sludge pretreatment methods is one of the ways that have been applied to boost hydrogen productivity. This study sheds new light on the impact of thermal and chemical pretreatments on the hydrogen-producing granular sludge morphology and strength as well as up-flow anaerobic sludge blanket (UASB) reactor performance treating palm oil mill effluent (POME). Thermal pretreatment showed devastating effects on the morphological and structural characteristics of the granules. However, the chemically pretreated granules remained structurally stable and relatively undamaged. The thermal pretreatment increased the cumulative hydrogen production by 40% and 76% over chemical pretreatment and control test (untreated), respectively

    An anaerobic hybrid bioreactor of granular and immobilized biomass for anaerobic digestion (AD) and dark fermentation (DF) of palm oil mill effluent: Mass transfer evaluation in granular sludge and role of internal packing

    No full text
    Among various bioreactors examined in anaerobic digestion and dark fermentation, UASB bioreactor has shown to be a promising alternative. However, mass transfer resistance and biomass washout have been the issues that reported as draw backs of the granular system in the literature. Another problem associated with such a system is its long start-up period as a result of biomass washout and long microbial granulation stage. In this paper, the results obtained from an UASFF bioreactor in methane (AD process) and hydrogen (DF process) production from POME, are presented to assess mass transfer of substrate into the granules and also study the role of internal packing used in the middle part of reactor in the process stability. The value of effectiveness factor, η, for AD and DF processes were calculated to be 0.96 and 0.94, respectively, indicating that there was no mass transfer resistance due to internal and/or external factors. The results showed that the packing material could retain biomass in the reactor and had outstanding contribution in the granulation enhancement. Its role as a supplementing treatment stage was more significant at low HRTs and up-flow velocities

    Polyacrylamide-induced coagulation process removing suspended solids from palm oil mill effluent

    No full text
    Palm oil mill effluent (POME) is a colloidal suspension with 2–4% suspended solids. About 50% of the suspended solids are cellulosic compounds, which are not degraded in the typical biological treatment systems. Chemical (polymer-induced coagulation) and physical (settling) pretreatment methods were examined to remove the suspended solids in this study. A novel physicochemical treatment with high water recovery and sludge compressibility including three cationic polyacrylamides (C-PAM; as coagulant) and three anionic polyacrylamides (A-PAM; as flocculant) with different molecular weights and charge densities was used. The coagulants used were biodegradable. The combination of a C-PAM (Chemfloc1515C) with medium molecular weight and charge density and an A-PAM (Chemfloc 430A) with high molecular weight and charge density at doses of 300 and 50 mg/dm3 showed the best total suspended solids (TSS) and chemical oxygen demand (COD) removal (96.4 and 70.9%, respectively). The optimal condition was found at pH 5, rapid mixing at 150 rpm for 1 min, and slow mixing at 40 rpm for 30 s. As a conclusion, the physiochemical pretreatment using biodegradable coagulants was a promising alternative to effectively separate TSS (96.4%) with high water recovery (76%)

    An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak

    No full text
    Sarawak is the largest state in Malaysia, with 22% of the nation's oil palm plantation area, making it the second largest contributor to palm biomass production. Despite the enormous amount of palm biomass in the state, the use of biomass as fuel for power generation remains low. This study is designed to investigate the sustainability of power generation from palm biomass specifically in Sarawak by conducting a survey among the palm oil mill developers. To conduct this investigation, several key sustainability factors were identified: the security of the biomass supply, the efficiency of conversion technology, the existing network system, challenges and future prospects for power generation from palm biomass. These factors were assessed through a set of questionnaires. The returned questionnaires were then analysed using statistical tools. The results of this study demonstrate that Sarawak has biomass in abundance, and that it is ready to be exploited for large scale power generation. The key challenge to achieving the renewable energy target is the inadequate grid infrastructure that inhibits palm oil developers from benefiting from the Feed-in-Tariff payment scheme. One way forward, a strategic partnership between government and industrial players, offers a promising outcome, depending on an economic feasibility study. The decentralization of electricity generation to support rural electrification is another feasible alternative for renewable energy development in the state
    corecore