10 research outputs found

    Self-Assembly of Rod-Coil Molecules into Molecular Length-Dependent Organization

    No full text
    A series of rod-coil molecules (n-x, where n represents the number of repeating units in a PPO coil and x the number of phenyl groups in a rod segment) with variation in the molecular length, but an identical rod to coil volume ratio was synthesized, and their self-assembling behavior was investigated by using DSC and X-ray scatterings. The molecule with a short rod-coil molecule (16-4) shows a 3-D tetragonal structure based on a body-centered symmetry of the discrete bundles in addition to a lamellar structure. This 3-D lattice, on heating, collapses to generate a disordered micellar structure. Remarkably, the molecules based on longer molecular length (21-5 and 24-6) were observed to self-organize into, on heating, lamellar, tetagonally perforated lamellar, 2-D hexagonal columnar and finally disordered micellar structures. Further increase in the molecular length as in the case of 29-7 and 32-8 induces a 3-D hexagonally perforated lamellar structure as an intermediate structure between the lamellar and tetragonally perforated lamellar structures. Consequently, these systems demonstrate the ability to regulate the domain nanostructure, from 2-dimensionally continuous layers, long strips to discrete bundles via periodic perforated layers by small changes in the molecular length, at an identical rod-to-coil volume fraction.close697

    Organization of branched rod-coil molecules into a 3-D tetragonally perforated lamellar mesophase

    No full text
    Tetramerization of coil-rod-coil ABC triblock copolymers to a tetrabranched molecule induces an unusual 3-D tetragonally perforated layered liquid crystalline phase as an intermediate structure between 1-D lamellar and 2-D hexagonal columnar phasesclose131

    Self-Organization of Bent Rod Molecules into Hexagonally Ordered Vesicular Columns

    No full text
    Bent-shaped rigid-core molecules with flexible chiral dendrons grafted to the outer side of the bend were synthesized and characterized by circular dichroism, differential scanning calorimetry, X-ray scatterings, and transmission electron microscopy in solution and the solid state. The bent aromatic rods based on hepta- and nonaphenylene with nitrile groups at both ends self assemble into well ordered hollow tubular structures in aqueous solution, while the bent rod based on heptaphenylene Without nitrile groups showed no apparent. aggregations in aqueous solution. In the solid state, the rigid-flexible molecules based on heptaphenylene rod without the nitrile group self-assemble into a 2D oblique columnar structure with the columnar cross-section containing two interlocked molecules.. Remarkably, the rigid flexible molecules based on hepta-, nona-, and undecaphenylene with nitrile groups elf-assemble: into a-hexagonal columnar structure With weak 3D order. A model of vesicular channel structure is proposed based on small- and wide- angle X-ray diffraction on oriented fibers, density measurement, reconstruction and simulation of electron density maps, and molecular dynamics simulation. In contrast to the hollow tubular structure found in solution, in the solid both the outside and the interior of the columns are filled by the pendant aliphatic coils. Filling of the interior of these vesicular channels is Made. possible by some bent rod molecules turning their obtuse apex inward. One in 7, 2 in 8, and 4 in 10 molecules are thus inverted in a column slice in compounds with hepta-, nona-, and undecaphenylene cores, respectively. These are new examples of vesicular double-segregated columnar structures recently discovered in some dendrons.close91
    corecore