18 research outputs found
Sorbent system based on organosilane‑coated polyurethane foam for oil spill clean up
In this study, fexible and open cell polyurethane foams were formulated and chemically modifed with organosilane to be used as a sorbent system for oil spill cleanup. Six polyurethane foams with diferent densities and three oil types with diferent viscosities were investigated. Moreover, sorbents were characterized based on their surface modifcation and sorption capacities. The main results indicated that the surface treatment on the solid fraction of the foam was efective, observing by the contact angle, thereby increasing the hydrophobicity of the samples. Cell morphology and foam density directly afect the sorption capacity of foams. Foams with high densities are indicated for oils with low viscosity, and foams with low densities are indicated for viscous oils. The oil sorption capacity also depends on oil viscosity (and temperature)
Sorbent system based on acetylated microfibrillated cellulose for remediation of oil aquatic environments
The growth of oil exploration and transport in marine environments brings concern over potential environmental disasters caused by oil spills. Thus, various materials are being developed and studied in order to minimize environmental impacts caused by these oil spills. Among these materials, the use of sorbents has appeared as a great potential technique for the treatment of effluents, by separating and collecting oil in the aqueous medium. This work describes the development of a sorbent system based on acetylated microfibrillated cellulose. Initially, cellulose fibers were modified by an acetylation reaction and thereafter, by a mechanical process using a wheel mill grinding. To produce the sorbent system, fibers were coated by three different types of envelopes to prevent leakage during the sorption experiment. Main results indicate a higher oil sorption by sorbents with higher oil viscosity and higher grammage of the envelope. Acetylated microfibrillated cellulose showed low water adsorption and high selectivity to oil and greater oil sorption values than commercially sorbent currently used, based on polypropylene fibers
Production of carbon foams from rice husk
The production of a material with rigid, multifunctional three-dimensional porous structure at a low cost is still challenging to date. In this work, a light and rigid carbon foam was prepared using rice husk as the basic element through a simple fermentation process followed by carbonization. For the fermentation process, the amount of biological yeast (7.5 g for the carbon foam CA-1P and 5 g for the carbon foam CA-2P) was used to evaluate its influence on the morphology of the foams. In order to prove that the heat treatment made in the foam alters the hydrophilic character of the rice husk foam, a chemical treatment with steam deposition was carried out. The foams were characterized by the following analyzes: apparent density, micrograph, thermogravimetry, contact angle, water sorption capacity and thermal conductivity. Visually, the CA-1P foams presented a structure with larger pores due to the greater amount of yeast used in its formulation. The heat treatment of rice potato foams proved to be as efficient as the chemical treatment for water contact angle above 90º, proving the ability of the foams to repel water/moisture. The thermal conductivity of the foams (0.029 and 0.026 W m-1 K-1 for CA-1P and CA-2P, respectively) was close to the conductivity of polyurethane foams (0.032 W m-1 K-1). Thus, the method used in the production of the carbon foams produced from the rice husk proved to be effective. In addition, the foams produced have the potential to be used for thermal insulation
Influence of the chemical treatment of banana fiber on poly(ethylene-co-vinyl acetate) composites with and without a blowing agent
Neste trabalho foi avaliada a influência do tratamento alcalino na fibra de bananeira (FB) e seu uso como agente de reforço em compósitos expandidos de poli(etileno-co-acetato de vinila) – EVA. O processo de mistura dos compósitos ocorreu em um misturador de rolos aberto e após conformados e expandidos em uma prensa aquecida com moldes de volumes variáveis. Os compósitos foram avaliados por suas propriedades mecânicas, térmicas e morfológicas. Os resultados indicam que o tratamento alcalino promove a extração de componentes menos estáveis na FB, tais como a lignina, hemicelulose, ceras e óleos de baixo peso molecular. O uso da FB nos compósitos proporciona um decréscimo das propriedades mecânicas de resistência à tração e rasgo em relação ao EVA puro devido a moderadas propriedades de interface polímero-fibra. Nos compósitos expandidos, as propriedades mecânicas decrescem com a diminuição da densidade em função da maior presença de espaços vazios no interior dos compósitos, porém as propriedades mecânicas específicas de resistência ao rasgo apresentaram melhores resultados com 10 pcr de FB em todos os moldes utilizados.In this work the influence of alkaline treatment on banana fiber (BF) and its use as reinforcement agent in expanded composites of poly(ethylene-co-vinyl acetate) – EVA were assessed. The mixing process for the composite was performed in an open roll mill, with composites being then shaped and expanded in a thermal press using variable volume molds. The composites were evaluated as for their mechanical, thermal and morphological properties. The results indicate that the alkali treatment promotes the extraction of less stable BF components such as lignin, hemicellulose, waxes and low molecular weight oils. The use of BF in the composites imparts reduction in mechanical properties of tensile and tear strength compared to neat EVA, owing to the moderate properties of the polymer-fiber interface. In expanded composites, the mechanical properties decreased with the reduction in density due to a higher amount of void spaces within the composites. However, the specific mechanical properties of tear strength showed improved results with 10 phr BF in all molds
Espumas poliméricas reforçadas com celulose
A nanotecnologia aplicada a espumas poliméricas é um campo emergente, pois permite que, mesmo com baixos teores de cargas, obtenham-se diferentes morfologias celulares durante a expansão das espumas. Com a alteração da morfologia celular em uma espuma polimérica, diferentes propriedades podem ser atribuídas e associadas às espumas poliméricas. Com base nisto, neste trabalhou foi avaliada a influência da incorporação de micro e nanofibras de celulose em composições de diversas espumas poliméricas, produzidas com diferentes matrizes poliméricas e diferentes métodos de expansão. Para a realização deste estudo, o mesmo foi dividido em 4 etapas. Na etapa I, foram utilizadas nanofibras de celulose longas e curtas, obtidas por desfibrilação mecânica e as nanofibras foram secadas por extração supercrítica e liofilização. A celulose foi incorporada em uma matriz polimérica de poli(ácido láctico) - PLA, um polímero biodegradável, e as espumas de PLA foram produzidas por um método não-convencional de produção de espumas de PLA, no qual foi utilizado agentes químicos de expansão (azodicarbonamida) e a expansão foi produzida pelo método de expansão livre de pressão Na etapa II, nanofibras curtas de celulose e nanofibras curtas de celulose acetilada, ou seja, fibras hidrofílicas e hidrofóbicas, foram incorporadas em uma matriz polimérica de poli(etileno-co-acetato de vinila) - EVA, pelo método de via úmida, no qual foi utilizada a suspensão de celulose (com baixo teor de água), junto com aditivos surfactantes e dispersantes. As espumas de EVA foram produzidas por compressão, pelo método de pressão constante, com o uso de agentes químicos (azodicarbonamida) de expansão e reticulantes (peróxido de dicumila). Na etapa III, nanofibras de celulose longas e curtas foram incorporadas no EVA, também pelo método de via úmida, com auxílio de surfactantes e dispersantes, porém a expansão das espumas foi realizada em uma autoclave, utilizando CO2 no estado supercrítico como agente físico de expansão e sem a presença de agentes reticulantes. Neste capítulo também foram avaliadas as diferentes condições de operação do equipamento, como temperatura e pressão, avaliando a influência destes parâmetros na expansão das espumas com CO2 no estado supercrítico Na etapa IV, foi avaliado o desenvolvimento de diferentes formulações de espumas flexíveis de poliuretano (PU) com células abertas, e com diferentes teores de celulose microcristalina. As espumas foram desenvolvidas para produção de sorventes, utilizadas na remediação de desastres que envolvem o derramamento de óleos em ambientes aquáticos. Foram produzidas espumas com diferentes densidades e com diferentes teores de celulose, e as mesmas foram revestidas com um organosilano (trietoxivinilsilano) para aumentar o grau de hidrofobicidade e seletividade da espuma de PU ao óleo. Como resultados principais, em geral observa-se que a presença da celulose atua como sítios para indução de uma maior nucleação de células durante a expansão das espumas, com isso, modificando a estrutura celular das espumas e promovendo, em geral, aumento na resistência mecânica por compressão das espumas sem comprometer ou alterar significativamente a densidade destas.Nanotechnology applied to polymeric foams is an emerging field, since it allows, even with low filler content, to obtain different cell morphologies. With cell morphology change in polymeric foams, different properties can be assigned and associated to the polymeric foams. Based on this, this work evaluates the influence of the incorporation of micro and nanocellulose fibers in various polymer foams compositions, produced with different polymer matrices and different expansion methods. This study was divided into 4 stages. In stage I, it was used long and short cellulose nanofibers, obtained by mechanical defibrillation and the nanofibers were dried by supercritical extraction and lyophilization. The cellulose was incorporated in a poly(lactic acid) - PLA matrix, a biodegradable polymer, and PLA foams were produced by an unconventional method of producing PLA foam, using chemical foaming agent (azodicarbonamide) and on expansion process by free expansion method. In phase II, short cellulose nanofibers and short acetylated cellulose nanofibers, i.e., hydrophilic and hydrophobic fibers, were incorporated in a polymeric matrix of poly(ethylene-co-vinyl acetate) - EVA, by a wet method, in which it was used the suspension of cellulose (with low water content), together with surfactants and dispersants The EVA foams were produced by compression, at constant pressure using chemical foaming agents (azodicarbonamide) and crosslinking agents (dicumyl peroxide). In stage III, long and short cellulose nanofibers were incorporated into EVA, also by the wet method, with the aid of surfactants and dispersants, but the expansion of the foam was carried out in an autoclave using CO2 in supercritical state, as the physical foaming agent and without the presence of crosslinkers agent. In this section, it was also evaluated different conditions of the equipment operation, such as temperature and pressure, assessing the influence of these parameters on the foams expansion with CO2 in supercritical state. In step IV, it was evaluated the development of different formulations of flexible polyurethane foams (PU) with open cells, and with different levels of microcrystalline cellulose. The foams were developed for the production of sorbents, used in remediation of disasters involving oil spills in aquatic environments PU foams were produced with different densities and different cellulose contents, and they have been coated with an organosilane (triethoxyvinylsilane) to increase the hydrophobicity degree and selectivity of the PU foam to the oil. As main results, it was generally observed, that the presence of the cellulose into the foams act as sites for induction of a higher cells nucleation during expansion, thereby modifying the cell structure of the foam and by this, promoting in general an increase in mechanical strength without compromising or significantly alter the density of the foam