15,977 research outputs found
Stripe-hexagon competition in forced pattern forming systems with broken up-down symmetry
We investigate the response of two-dimensional pattern forming systems with a
broken up-down symmetry, such as chemical reactions, to spatially resonant
forcing and propose related experiments. The nonlinear behavior immediately
above threshold is analyzed in terms of amplitude equations suggested for a
and ratio between the wavelength of the spatial periodic forcing
and the wavelength of the pattern of the respective system. Both sets of
coupled amplitude equations are derived by a perturbative method from the
Lengyel-Epstein model describing a chemical reaction showing Turing patterns,
which gives us the opportunity to relate the generic response scenarios to a
specific pattern forming system. The nonlinear competition between stripe
patterns and distorted hexagons is explored and their range of existence,
stability and coexistence is determined. Whereas without modulations hexagonal
patterns are always preferred near onset of pattern formation, single mode
solutions (stripes) are favored close to threshold for modulation amplitudes
beyond some critical value. Hence distorted hexagons only occur in a finite
range of the control parameter and their interval of existence shrinks to zero
with increasing values of the modulation amplitude. Furthermore depending on
the modulation amplitude the transition between stripes and distorted hexagons
is either sub- or supercritical.Comment: 10 pages, 12 figures, submitted to Physical Review
High-speed bipolar phototransistors in a 180nm CMOS process
AbstractSeveral high-speed pnp phototransistors built in a standard 180nm CMOS process are presented. The phototransistors were implemented in sizes of 40×40μm2 and 100×100μm2. Different base and emitter areas lead to different characteristics of the phototransistors. As starting material a p+ wafer with a p− epitaxial layer on top was used. The phototransistors were optically characterized at wavelengths of 410, 675 and 850nm. Bandwidths up to 92MHz and dynamic responsivities up to 2.95A/W were achieved. Evaluating the results, we can say that the presented phototransistors are well suited for high speed photosensitive optical applications where inherent amplification is needed. Further on, the standard silicon CMOS implementation opens the possibility for cheap integration of integrated optoelectronic circuits. Possible applications for the presented phototransistors are low cost high speed image sensors, opto-couplers, etc
Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED
We investigate the influence of the electron-phonon interaction on the decay
dynamics of a quantum dot coupled to an optical microcavity. We show that the
electron-phonon interaction has important consequences on the dynamics,
especially when the quantum dot and cavity are tuned out of resonance, in which
case the phonons may add or remove energy leading to an effective non-resonant
coupling between quantum dot and cavity. The system is investigated using two
different theoretical approaches: (i) a second-order expansion in the bare
phonon coupling constant, and (ii) an expansion in a polaron-photon coupling
constant, arising from the polaron transformation which allows an accurate
description at high temperatures. In the low temperature regime we find
excellent agreement between the two approaches. An extensive study of the
quantum dot decay dynamics is performed, where important parameter dependencies
are covered. We find that in general the electron-phonon interaction gives rise
to a greatly increased bandwidth of the coupling between quantum dot and
cavity. At low temperature an asymmetry in the quantum dot decay rate is
observed, leading to a faster decay when the quantum dot has a larger energy
than to the cavity. We explain this as due to the absence of phonon absorption
processes. Furthermore, we derive approximate analytical expressions for the
quantum dot decay rate, applicable when the cavity can be adiabatically
eliminated. The expressions lead to a clear interpretation of the physics and
emphasizes the important role played by the effective phonon density,
describing the availability of phonons for scattering, in quantum dot decay
dynamics. Based on the analytical expressions we present the parameter regimes
where phonon effects are expected to be important. Also, we include all
technical developments in appendices.Comment: published PRB version, comments are very welcom
Hydraulic architecture of palms
Journal ArticleThe water transport and storage system of palms is adapted to maintain the primary stem xylem functional over the life of the shoot, and in spite of severe drought. However, our structural information far exceeds our knowledge of vascular function, and these functional considerations bring more questions than answers. The tendency to generalize from limited data on a few species begs the question of how the hydraulic parameters discussed vary between palms with different growth forms and ecologies
Particles held by springs in a linear shear flow exhibit oscillatory motion
The dynamics of small spheres, which are held by linear springs in a low
Reynolds number shear flow at neighboring locations is investigated. The flow
elongates the beads and the interplay of the shear gradient with the nonlinear
behavior of the hydrodynamic interaction among the spheres causes in a large
range of parameters a bifurcation to a surprising oscillatory bead motion. The
parameter ranges, wherein this bifurcation is either super- or subcritical, are
determined.Comment: 4 pages, 5 figure
Sortenbedingte Unterschiede der N-Effizienz und Beziehung zum Wurzelwachstums von Weizen (Triticum aestivum L.) unter den Bedingungen des Ökologischen Landbaus
N Uptake at EC 32, 62 and 92 was determined in 6 wheat varieties in field trials under conditions of conventional and organic farming over 3 years. Root growth potential was assessed in a separate trial under controlled conditions. Rank of varieties regarding N-uptake was dependent on yield level of the test environments and was mainly due to differences in uptake during grain filling. In one variety high N uptake potential coincided with high root growth in later growth stages
Matching of the continuous gravitational wave in an all sky search
We investigate the matching of continuous gravitational wave (CGW) signals in
an all sky search with reference to Earth based laser interferometric
detectors. We consider the source location as the parameters of the signal
manifold and templates corresponding to different source locations. It has been
found that the matching of signals from locations in the sky that differ in
their co-latitude and longitude by radians decreases with source
frequency. We have also made an analysis with the other parameters affecting
the symmetries. We observe that it may not be relevant to take care of the
symmetries in the sky locations for the search of CGW from the output of
LIGO-I, GEO600 and TAMA detectors.Comment: 16 pages, 7 figures, 3 Tables, To appear in Int. J. Mod. Phys.
Fourier transform pure nuclear quadrupole resonance by pulsed field cycling
We report the observation of Fourier transform pure NQR by pulsed field cycling. For deuterium, well resolved spectra are obtained with high sensitivity showing the low frequency nu0 lines and allowing assignments of quadrupole couplings and asymmetry parameters to inequivalent deuterons. The technique is ideally applicable to nuclei with low quadrupolar frequencies (e.g., 2D, 7Li, 11B, 27Al, 23Na, 14N) and makes possible high resolution structure determination in polycrystalline or disordered materials
Characterizing flows with an instrumented particle measuring Lagrangian accelerations
We present in this article a novel Lagrangian measurement technique: an
instrumented particle which continuously transmits the force/acceleration
acting on it as it is advected in a flow. We develop signal processing methods
to extract information on the flow from the acceleration signal transmitted by
the particle. Notably, we are able to characterize the force acting on the
particle and to identify the presence of a permanent large-scale vortex
structure. Our technique provides a fast, robust and efficient tool to
characterize flows, and it is particularly suited to obtain Lagrangian
statistics along long trajectories or in cases where optical measurement
techniques are not or hardly applicable.Comment: submitted to New Journal of Physic
- …