208 research outputs found
A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics
Efron (1979) introduced the bootstrap method for independent data but it cannot be easily applied to spatial data because of their dependency. For spatial data that are correlated in terms of their locations in the underlying space the moving block bootstrap method is usually used to estimate the precision measures of the estimators. The precision of the moving block bootstrap estimators is related to the block size which is difficult to select. In the moving block bootstrap method also the variance estimator is underestimated. In this paper, first the semi-parametric bootstrap is used to estimate the precision measures of estimators in spatial data analysis. In the semi-parametric bootstrap method, we use the estimation of the spatial correlation structure. Then, we compare the semi-parametric bootstrap with a moving block bootstrap for variance estimation of estimators in a simulation study. Finally, we use the semi-parametric bootstrap to analyze the coal-ash data
Sum rules and energy scales in the high-temperature superconductor YBa2Cu3O6+x
The Ferrell-Glover-Tinkham (FGT) sum rule has been applied to the temperature
dependence of the in-plane optical conductivity of optimally-doped
YBa_2Cu_3O_{6.95} and underdoped YBa_2Cu_3O_{6.60}. Within the accuracy of the
experiment, the sum rule is obeyed in both materials. However, the energy scale
\omega_c required to recover the full strength of the superfluid \rho_s in the
two materials is dramatically different; \omega_c \simeq 800 cm^{-1} in the
optimally doped system (close to twice the maximum of the superconducting gap,
2\Delta_0), but \omega_c \gtrsim 5000 cm^{-1} in the underdoped system. In both
materials, the normal-state scattering rate close to the critical temperature
is small, \Gamma < 2\Delta_0, so that the materials are not in the dirty limit
and the relevant energy scale for \rho_s in a BCS material should be twice the
energy gap. The FGT sum rule in the optimally-doped material suggests that the
majority of the spectral weight of the condensate comes from energies below
2\Delta_0, which is consistent with a BCS material in which the condensate
originates from a Fermi liquid normal state. In the underdoped material the
larger energy scale may be a result of the non-Fermi liquid nature of the
normal state. The dramatically different energy scales suggest that the nature
of the normal state creates specific conditions for observing the different
aspects of what is presumably a central mechanism for superconductivity in
these materials.Comment: RevTeX 4 file, 9 pages with 7 embedded eps figure
First Observation of Coherent Production in Neutrino Nucleus Interactions with 2 GeV
The MiniBooNE experiment at Fermilab has amassed the largest sample to date
of s produced in neutral current (NC) neutrino-nucleus interactions at
low energy. This paper reports a measurement of the momentum distribution of
s produced in mineral oil (CH) and the first observation of coherent
production below 2 GeV. In the forward direction, the yield of events
observed above the expectation for resonant production is attributed primarily
to coherent production off carbon, but may also include a small contribution
from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino
flux, the sum of the NC coherent and diffractive modes is found to be (19.5
1.1 (stat) 2.5 (sys))% of all exclusive NC production at
MiniBooNE. These measurements are of immediate utility because they quantify an
important background to MiniBooNE's search for
oscillations.Comment: Submitted to Phys. Lett.
CONTAIN D11 : integrated final results and conclusions
Carbon capture and storage is a technology capable of reducing CO2 outputs on a large scale; the concept usually requires CO2 to be removed from post-combustion flue gases and sequestered in geological formations. Depleted gas fields constitute “the most important storage type for the UK” and will provide a large and important potential future offshore storage capacity (DECC, 2012). Over the last 4 years, the CONTAIN research project has focussed on the geomechanical behaviour of depleted hydrocarbon fields in response to injection with CO2, combining a modelling and experimental approach with the public perceptions of CCS into three work packages. The project has provided a better understanding of the hydromechanical impacts of depletion on caprocks and the effect of subsequent CO2 injection, in order to assist with the implementation of CCS in this type of reservoir.
Work package 1 outlined a phenomenological approach to assessing possible deformation during operation. Focus was placed on rock mechanics and transport experiments on material from the geologies of target formations in the North Sea, providing information that could be incorporated into numerical simulations. Work package 2 expanded this understanding by considering fractured caprock. Numerical modelling was used to study the deformation of an initially intact caprock caused by the depletion of an underlying reservoir during oil extraction. Deformation and flow were geomechanically modelled in three dimensions using a fully coupled poroelastic model, incorporating discrete fractures and faults into the caprock. Work package 3 offered new and valuable insight on future public awareness campaigns aimed at gaining acceptance of CCS. Qualitative expert interviews have been used, a CCS expert survey and a public survey across four countries to gain an understanding of perceptions of CCS risks and benefits, and has allowed for comparison of views on CCS between experts and public. In addition, the work package has explored the impact of different message framings on CCS attitudes.
The findings of each work package are summarised in this report, with each work package represented by a report chapter. A synthesis of the findings and discussion of the work as a whole follows
Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses
The sidereal time dependence of MiniBooNE electron neutrino and anti-electron
neutrino appearance data are analyzed to search for evidence of Lorentz and CPT
violation. An unbinned Kolmogorov-Smirnov test shows both the electron neutrino
and anti-electron neutrino appearance data are compatible with the null
sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit
with a Lorentz-violating oscillation model derived from the Standard Model
Extension (SME) to describe any excess events over background, we find that the
electron neutrino appearance data prefer a sidereal time-independent solution,
and the anti-electron neutrino appearance data slightly prefer a sidereal
time-dependent solution. Limits of order 10E-20 GeV are placed on combinations
of SME coefficients. These limits give the best limits on certain SME
coefficients for muon neutrino to electron neutrino and anti-muon neutrino to
anti-electron neutrino oscillations. The fit values and limits of combinations
of SME coefficients are provided.Comment: 14 pages, 3 figures, and 2 tables, submitted to Physics Letters
A Hierarchical Taxonomy of Psychopathology Can Transform Mental Health Research
For more than a century, research on psychopathology has focused on categorical diagnoses. Although this work has produced major discoveries, growing evidence points to the superiority of a dimensional approach to the science of mental illness. Here we outline one such dimensional system—the Hierarchical Taxonomy of Psychopathology (HiTOP)—that is based on empirical patterns of co-occurrence among psychological symptoms. We highlight key ways in which this framework can advance mental-health research, and we provide some heuristics for using HiTOP to test theories of psychopathology. We then review emerging evidence that supports the value of a hierarchical, dimensional model of mental illness across diverse research areas in psychological science. These new data suggest that the HiTOP system has the potential to accelerate and improve research on mental-health problems as well as efforts to more effectively assess, prevent, and treat mental illness.FSW – Publicaties zonder aanstelling Universiteit Leide
Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume
The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)
[no abstract available
Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
- …