4,469 research outputs found

    High-sensitivity tool for studying phonon related mechanical losses in low loss materials

    Full text link
    Fundamental mechanical loss mechanisms exist even in very pure materials, for instance, due to the interactions of excited acoustic waves with thermal phonons. A reduction of these losses in a certain frequency range is desired in high precision instruments like gravitational wave detectors. Systematic analyses of the mechanical losses in those low loss materials are essential for this aim, performed in a highly sensitive experimental set-up. Our novel method of mechanical spectroscopy, cryogenic resonant acoustic spectroscopy of bulk materials (CRA spectroscopy), is well suited to systematically determine losses at the resonant frequencies of the samples of less than 10^(-9) in the wide temperature range from 5 to 300 K. A high precision set-up in a specially built cryostat allows contactless excitation and readout of the oscillations of the sample. The experimental set-up and measuring procedure are described. Limitations to our experiment due to external loss mechanisms are analysed. The influence of the suspension system as well as the sample preparation is explained.Comment: 4 pages, 3 figures, proceedings of PHONONS07, submitted to Journal of Physics: Conference Serie

    Jahn-Teller effect versus Hund's rule coupling in C60N-

    Full text link
    We propose variational states for the ground state and the low-energy collective rotator excitations in negatively charged C60N- ions (N=1...5). The approach includes the linear electron-phonon coupling and the Coulomb interaction on the same level. The electron-phonon coupling is treated within the effective mode approximation (EMA) which yields the linear t_{1u} x H_g Jahn-Teller problem whereas the Coulomb interaction gives rise to Hund's rule coupling for N=2,3,4. The Hamiltonian has accidental SO(3) symmetry which allows an elegant formulation in terms of angular momenta. Trial states are constructed from coherent states and using projection operators onto angular momentum subspaces which results in good variational states for the complete parameter range. The evaluation of the corresponding energies is to a large extent analytical. We use the approach for a detailed analysis of the competition between Jahn-Teller effect and Hund's rule coupling, which determines the spin state for N=2,3,4. We calculate the low-spin/high-spin gap for N=2,3,4 as a function of the Hund's rule coupling constant J. We find that the experimentally measured gaps suggest a coupling constant in the range J=60-80meV. Using a finite value for J, we recalculate the ground state energies of the C60N- ions and find that the Jahn-Teller energy gain is partly counterbalanced by the Hund's rule coupling. In particular, the ground state energies for N=2,3,4 are almost equal

    Cost benefit analysis of space communications technology: Volume 1: Executive summary

    Get PDF
    The questions of (1) whether or not NASA should support the further development of space communications technology, and, if so, (2) which technology's support should be given the highest priority are addressed. Insofar as the issues deal principally with resource allocation, an economics perspective is adopted. The resultant cost benefit methodology utilizes the net present value concept in three distinct analysis stages to evaluate and rank those technologies which pass a qualification test based upon probable (private sector) market failure. User-preference and technology state-of-the-art surveys were conducted (in 1975) to form a data base for the technology evaluation. The program encompassed near-future technologies in space communications earth stations and satellites, including the noncommunication subsystems of the satellite (station keeping, electrical power system, etc.). Results of the research program include confirmation of the applicability of the methodology as well as a list of space communications technologies ranked according to the estimated net present value of their support (development) by NASA

    Spin Glass and ferromagnetism in disordered Cerium compounds

    Full text link
    The competition between spin glass, ferromagnetism and Kondo effect is analysed here in a Kondo lattice model with an inter-site random coupling JijJ_{ij} between the localized magnetic moments given by a generalization of the Mattis model which represents an interpolation between ferromagnetism and a highly disordered spin glass. Functional integral techniques with Grassmann fields have been used to obtain the partition function. The static approximation and the replica symmetric ansatz have also been used. The solution of the problem is presented as a phase diagram giving T/JT/{J} {\it versus} JK/JJ_K/J where TT is the temperature, JKJ_{K} and J{J} are the strengths of the intrasite Kondo and the intersite random couplings, respectively. If JK/JJ_K/{J} is small, when temperature is decreased, there is a second order transition from a paramagnetic to a spin glass phase. For lower T/JT/{J}, a first order transition appears between the spin glass phase and a region where there are Mattis states which are thermodynamically equivalent to the ferromagnetism. For very low T/J{T/{J}}, the Mattis states become stable. On the other hand, it is found as solution a Kondo state for large JK/JJ_{K}/{J} values. These results can improve the theoretical description of the well known experimental phase diagram of CeNi1xCuxCeNi_{1-x}Cu_{x}.Comment: 17 pages, 5 figures, accepted Phys. Rev.

    Use and Evaluation of a Statewide 4-H Volunteer Newsletter

    Get PDF
    The Ohio 4-H Cloverbud Connections newsletter is a statewide publication targeted for volunteers working with K - 2 youth. Two statewide surveys in Ohio were conducted with 4-H volunteers and 4-H Extension staff to measure the usefulness and utilization of the newsletter. Results indicated 4-H Cloverbud volunteers and 4-H staff utilize the newsletter and consider it a valuable resource. Ninety-seven percent of the 4-H Cloverbud volunteers and 4-H staff want the newsletter continued. Findings indicate the importance of 4-H Cloverbud activities for readers, need for more awareness of the newsletter Web site, and importance of 4-H Cloverbud volunteer training

    Is the Unitarity of the quark-mixing-CKM-matrix violated in neutron β\beta-decay?

    Full text link
    We report on a new measurement of neutron β\beta-decay asymmetry. From the result \linebreak A0A_0 = -0.1189(7), we derive the ratio of the axial vector to the vector coupling constant λ\lambda = gA/gV{\it g_A/g_V} = -1.2739(19). When included in the world average for the neutron lifetime τ\tau = 885.7(7)s, this gives the first element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix VudV_{ud} . With this value and the Particle Data Group values for VusV_{us} and VubV_{ub}, we find a deviation from the unitarity condition for the first row of the CKM matrix of Δ\Delta = 0.0083(28), which is 3.0 times the stated error

    Effects of short-term dynamic balance training on postural stability in school-aged football players and gymnasts

    Get PDF
    Static and dynamic balance abilities enable simple and complex movements and are determinants of top athletic performance. Balance abilities and their proficiency differ fundamentally with respect to age, gender, type of balance intervention, and type of sport. With this study, we aim to investigate whether 4weeks of dynamic balance training (DBT) improves static balance performance in school-aged gymnasts and football players. For this purpose, young male gymnasts (n=21) and male football players (n=20) completed an initial static balance assessment consisting of two one-legged stance (left and right foot) and two two-legged stance (eyes open and eyes closed) tasks. Subsequently, all participants underwent a 4-week intervention. DBT consisting of nine individual tasks was performed two times per week. Another static balance assessment followed 1day after the last training session and retention was assessed 2weeks later. Dynamic balance scores and total path length were analyzed via rank-based repeated measures designs using ANOVA-type statistics. The influence of factors GROUP and TIME on the static and dynamic balance performance was examined. Prior to DBT, young gymnasts showed better static balance performance than football players. However, after intervention, both groups improved in both one-legged stance tasks and also had high retention rates in these tasks. No significant improvements were seen in either group in the two-legged balance tests. Both groups improved in the dynamic balance tasks, although no differences in learning rates were evident. Our findings imply an inter-relationship between both static and dynamic balance components. Consequently, training regimes should include both balance components to facilitate early development of balance ability

    Experimental analysis of sample-based maps for long-term SLAM

    Get PDF
    This paper presents a system for long-term SLAM (simultaneous localization and mapping) by mobile service robots and its experimental evaluation in a real dynamic environment. To deal with the stability-plasticity dilemma (the trade-off between adaptation to new patterns and preservation of old patterns), the environment is represented at multiple timescales simultaneously (5 in our experiments). A sample-based representation is proposed, where older memories fade at different rates depending on the timescale, and robust statistics are used to interpret the samples. The dynamics of this representation are analysed in a five week experiment, measuring the relative influence of short- and long-term memories over time, and further demonstrating the robustness of the approach
    corecore