18 research outputs found

    3β€²-End Sequencing for Expression Quantification (3SEQ) from Archival Tumor Samples

    Get PDF
    Gene expression microarrays are the most widely used technique for genome-wide expression profiling. However, microarrays do not perform well on formalin fixed paraffin embedded tissue (FFPET). Consequently, microarrays cannot be effectively utilized to perform gene expression profiling on the vast majority of archival tumor samples. To address this limitation of gene expression microarrays, we designed a novel procedure (3β€²-end sequencing for expression quantification (3SEQ)) for gene expression profiling from FFPET using next-generation sequencing. We performed gene expression profiling by 3SEQ and microarray on both frozen tissue and FFPET from two soft tissue tumors (desmoid type fibromatosis (DTF) and solitary fibrous tumor (SFT)) (total nβ€Š=β€Š23 samples, which were each profiled by at least one of the four platform-tissue preparation combinations). Analysis of 3SEQ data revealed many genes differentially expressed between the tumor types (FDR<0.01) on both the frozen tissue (∼9.6K genes) and FFPET (∼8.1K genes). Analysis of microarray data from frozen tissue revealed fewer differentially expressed genes (∼4.64K), and analysis of microarray data on FFPET revealed very few (69) differentially expressed genes. Functional gene set analysis of 3SEQ data from both frozen tissue and FFPET identified biological pathways known to be important in DTF and SFT pathogenesis and suggested several additional candidate oncogenic pathways in these tumors. These findings demonstrate that 3SEQ is an effective technique for gene expression profiling from archival tumor samples and may facilitate significant advances in translational cancer research

    Persistent Infection and Promiscuous Recombination of Multiple Genotypes of an RNA Virus within a Single Host Generate Extensive Diversity

    Get PDF
    Recombination and reassortment of viral genomes are major processes contributing to the creation of new, emerging viruses. These processes are especially significant in long-term persistent infections where multiple viral genotypes co-replicate in a single host, generating abundant genotypic variants, some of which may possess novel host-colonizing and pathogenicity traits. In some plants, successive vegetative propagation of infected tissues and introduction of new genotypes of a virus by vector transmission allows for viral populations to increase in complexity for hundreds of years allowing co-replication and subsequent recombination of the multiple viral genotypes. Using a resequencing microarray, we examined a persistent infection by a Citrus tristeza virus (CTV) complex in citrus, a vegetatively propagated, globally important fruit crop, and found that the complex comprised three major and a number of minor genotypes. Subsequent deep sequencing analysis of the viral population confirmed the presence of the three major CTV genotypes and, in addition, revealed that the minor genotypes consisted of an extraordinarily large number of genetic variants generated by promiscuous recombination between the major genotypes. Further analysis provided evidence that some of the recombinants underwent subsequent divergence, further increasing the genotypic complexity. These data demonstrate that persistent infection of multiple viral genotypes within a host organism is sufficient to drive the large-scale production of viral genetic variants that may evolve into new and emerging viruses

    Three discontinuous loop nucleotides in the 3β€² terminal stem-loop are required for Red clover necrotic mosaic virus RNA-2 replication

    Get PDF
    AbstractThe genome of Red clover necrotic mosaic virus (RCNMV) consists of positive-sense, single-stranded RNA-1 and RNA-2. The 29 nucleotides at the 3β€² termini of both RNAs are nearly identical and are predicted to form a stable stem-loop (SL) structure, which is required for RCNMV RNA replication. Here we performed a systematic mutagenesis of the RNA-2 3β€² SL to identify the nucleotides critical for replication. Infectivity and RNA replication assays indicated that the secondary structure of the 3β€² SL and its loop sequence UAUAA were required for RNA replication. Single-nucleotide substitution analyses of the loop further pinpointed three discontinuous nucleotides (L1U, L2A, and L4A) that were vital for RNA replication. A 3-D model of the 3β€² SL predicted the existence of a pocket formed by these three nucleotides that could be involved in RNA–protein interaction. The functional groups of the bases participating in this interaction at these positions are discussed

    Cutting Performance of Multicomponent AlTiZrN-Coated Cemented Carbide (YG8) Tools during Milling of High-Chromium Cast Iron

    No full text
    In order to improve the cutting performance of cemented-carbide (YG8) tools during the milling of high-chromium cast iron, AlTiZrN coating was deposited on the surface of YG8 samples and milling tools by physical vapor deposition (PVD) technology. The micromorphology and mechanical properties of the coating were studied by the experimental method, and the cutting performance of the coated tools was tested by a milling machining center. The results show that the AlTiZrN coating presents the face-centered cubic (fcc) structure of TiN. The average microhardness is 3887 HV0.05. The bonding strength between the coating and the substrate meets the standard HF3 and is up to the requirements. The coefficient of friction (COF) of the coating is about 0.32. AlTiZrN coating can significantly improve the life of cemented-carbide tools. At cutting speeds of 85, 105, and 125 mm/min, the lives of the AlTiZrN-coated tools increased by 20.7%, 22.4%, and 35.2%, respectively, compared with the uncoated tools. Under the same cutting condition, AlTiZrN-coated tools have better cutting and chip-breaking performance than uncoated tools. With the increase in cutting speed, the workpiece chips produced by AlTiZrN-coated tools are smaller and more uniform, and the scratches on the machined surface are smoother. Therefore, at higher cutting speeds, AlTiZrN-coated tools have more advantages in life and cutting performance than that of uncoated tools. During the cutting process, the wear mechanisms of the AlTiZrN-coated tools mainly included friction, oxidation, and bonding, while oxidation and bonding wear were the main wear mechanisms in the later stage of wear
    corecore