109 research outputs found

    Overall Performance Evaluation of Tubular Scraper Conveyors Using a TOPSIS-Based Multiattribute Decision-Making Method

    Get PDF
    Properly evaluating the overall performance of tubular scraper conveyors (TSCs) can increase their overall efficiency and reduce economic investments, but such methods have rarely been studied. This study evaluated the overall performance of TSCs based on the technique for order of preference by similarity to ideal solution (TOPSIS). Three conveyors of the same type produced in the same factory were investigated. Their scraper space, material filling coefficient, and vibration coefficient of the traction components were evaluated. A mathematical model of the multiattribute decision matrix was constructed; a weighted judgment matrix was obtained using the DELPHI method. The linguistic positive-ideal solution (LPIS), the linguistic negative-ideal solution (LNIS), and the distance from each solution to the LPIS and the LNIS, that is, the approximation degrees, were calculated. The optimal solution was determined by ordering the approximation degrees for each solution. The TOPSIS-based results were compared with the measurement results provided by the manufacturer. The ordering result based on the three evaluated parameters was highly consistent with the result provided by the manufacturer. The TOPSIS-based method serves as a suitable evaluation tool for the overall performance of TSCs. It facilitates the optimal deployment of TSCs for industrial purposes

    Channel Measurement and Coverage Analysis for NIRS-Aided THz Communications in Indoor Environments

    Full text link
    Due to large reflection and diffraction losses in the THz band, it is arguable to achieve reliable links in the none-line-of-sight (NLoS) cases. Intelligent reflecting surfaces, although are expected to solve the blockage problem and enhance the system connectivity, suffer from fabrication difficulty and operation complexity. In this work, non-intelligent reflecting surfaces (NIRS), which are simply made of costless metal foils and have no signal configuration capability, are adopted to enhance the signal strength and coverage in the THz band. Channel measurements are conducted in typical indoor scenarios at 306-321 GHz and 356-371 GHz bands to validate the effectiveness of the NIRS. Results measured with NIRS in different sizes show that large NIRS performs much better than small NIRS. Furthermore, by invoking the NIRS, the additional reflection loss can be reduced by more than 10~dB and the coverage ratio is increased by up to 39%\% for a 10~dB signal-to-noise ratio (SNR) threshold.Comment: 5 figures, 2 table

    Channel Measurement and Characterization with Modified SAGE Algorithm in an Indoor Corridor at 300 GHz

    Full text link
    The much higher frequencies in the Terahertz (THz) band prevent the effective utilization of channel models dedicated for microwave or millimeter-wave frequency bands. In this paper, a measurement campaign is conducted in an indoor corridor scenario at 306-321 GHz with a frequency-domain Vector Network Analyzer (VNA)-based sounder. To realize high-resolution multipath component (MPC) extraction for the direction-scan measurement campaigns in the THz band, a novel modified space-alternating generalized expectation-maximization (SAGE) algorithm is further proposed. Moreover, critical channel characteristics, including the path loss, shadow fading, K-factor, delay spread, angular spreads, cluster parameters, and cross correlations are calculated and analyzed in the LoS case. Besides, two contrasted measurement campaigns in the NLoS case are conducted, with and without additional reflective foils on walls to serve as effective scatterers. Comparison results indicate that the reflective foils are useful to improve the channel conditions in the NLoS case by nearly 6 dB, which is potential to be utilized as alternative of intelligent reflecting surfaces (IRS) to enhance the coverage ability of THz communications.Comment: 12 pages, 8 figure

    300 GHz Dual-Band Channel Measurement, Analysis and Modeling in an L-shaped Hallway

    Full text link
    The Terahertz (THz) band (0.1-10 THz) has been envisioned as one of the promising spectrum bands for sixth-generation (6G) and beyond communications. In this paper, a dual-band angular-resolvable wideband channel measurement in an indoor L-shaped hallway is presented and THz channel characteristics at 306-321 GHz and 356-371 GHz are analyzed. It is found that conventional close-in and alpha-beta path loss models cannot take good care of large-scale fading in the non-line-of-sight (NLoS) case, for which a modified alpha-beta path loss model for the NLoS case is proposed and verified in the NLoS case for both indoor and outdoor L-shaped scenarios. To describe both large-scale and small-scale fading, a ray-tracing (RT)-statistical hybrid channel model is proposed in the THz hallway scenario. Specifically in the hybrid model, the deterministic part in hybrid channel modeling uses RT modeling of dominant multi-path components (MPCs), i.e., LoS and multi-bounce reflected paths in the near-NLoS region, while dominant MPCs at far-NLoS positions can be deduced based on the developed statistical evolving model. The evolving model describes the continuous change of arrival angle, power and delay of dominant MPCs in the NLoS region. On the other hand, non-dominant MPCs are generated statistically. The proposed hybrid approach reduces the computational cost and solves the inaccuracy or even missing of dominant MPCs through RT at far-NLoS positions

    300 GHz Channel Measurement and Characterization in the Atrium of a Building

    Full text link
    With abundant bandwidth resource, the Terahertz band (0.1~THz to 10~THz) is envisioned as a key technology to realize ultra-high data rates in the 6G and beyond mobile communication systems. However, moving to the THz band, existing channel models dedicated for microwave or millimeter-wave bands are ineffective. To fill this research gap, extensive channel measurement campaigns and characterizations are necessary. In this paper, using a frequency-domain Vector Network Analyzer (VNA)-based sounder, a measurement campaign is conducted in the outdoor atrium of a building in 306-321 GHz band. The measured data are further processed to obtain the channel transfer functions (CTFs), parameters of multipath components (MPCs), as well as clustering results. Based on the MPC parameters, the channel characteristics, such as path loss, shadow fading, K-factor, etc., are calculated and analyzed. The extracted channel characteristics and numerology are helpful to study channel modeling and guide system design for THz communications.Comment: 5 pages, 2 figures. arXiv admin note: text overlap with arXiv:2203.16745 by other author

    Terahertz Channel Measurement and Analysis on a University Campus Street

    Full text link
    Owning abundant bandwidth resource, the Terahertz (0.1-10 THz) band is a promising spectrum to support sixth-generation (6G) and beyond communications. As the foundation of channel study in the spectrum, channel measurement is ongoing in covering representative 6G communication scenarios and promising THz frequency bands. In this paper, a wideband channel measurement in an L-shaped university campus street is conducted at 306-321 GHz and 356-371 GHz. In particular, ten line-of-sight (LoS) and eight non-line-of-sight (NLoS) points are measured at the two frequency bands, respectively. In total, 6480 channel impulse responses (CIRs) are obtained from the measurement, based on which multi-path propagation in the L-shaped roadway in the THz band is elaborated to identify major scatterers of walls, vehicles, etc. in the environment and their impact on multi-path components (MPCs). Furthermore, outdoor THz channel characteristics in the two frequency bands are analyzed, including path losses, shadow fading, cluster parameters, delay spread and angular spread. In contrast with the counterparts in the similar outdoor scenario at lower frequencies, the results verify the sparsity of MPCs at THz frequencies and indicate smaller power spreads in both temporal and spatial domains in the THz band.Comment: 6 pages, 15 figure

    306-321 GHz Wideband Channel Measurement and Analysis in an Indoor Lobby

    Full text link
    The Terahertz (0.1-10 THz) band has been envisioned as one of the promising spectrum bands to support ultra-broadband sixth-generation (6G) and beyond communications. In this paper, a wideband channel measurement campaign in an indoor lobby at 306-321 GHz is presented. The measurement system consists of a vector network analyzer (VNA)-based channel sounder, and a directional antenna equipped at the receiver to resolve multi-path components (MPCs) in the angular domain. In particular, 21 positions and 3780 channel impulse responses (CIRs) are measured in the lobby, including the line-of-sight (LoS), non-line-of-sight (NLoS) and obstructed-line-of-sight (OLoS) cases. Multi-path propagation is elaborated in terms of clustering results, and the effect of typical scatterers in the indoor lobby scenario in the THz band is explored. Moreover, indoor THz channel characteristics are analyzed in depth. Specifically, best direction and omni-directional path losses are analyzed by invoking close-in and alpha-beta path loss models. The most clusters are observed in the OLoS case, followed by NLoS and then LoS cases. On average, the power dispersion of MPCs is smaller in the LoS case in both temporal and angular domains, compared with the NLoS and OLoS counterparts.Comment: 6 pages, 15 figure

    DRPT: Disentangled and Recurrent Prompt Tuning for Compositional Zero-Shot Learning

    Full text link
    Compositional Zero-shot Learning (CZSL) aims to recognize novel concepts composed of known knowledge without training samples. Standard CZSL either identifies visual primitives or enhances unseen composed entities, and as a result, entanglement between state and object primitives cannot be fully utilized. Admittedly, vision-language models (VLMs) could naturally cope with CZSL through tuning prompts, while uneven entanglement leads prompts to be dragged into local optimum. In this paper, we take a further step to introduce a novel Disentangled and Recurrent Prompt Tuning framework termed DRPT to better tap the potential of VLMs in CZSL. Specifically, the state and object primitives are deemed as learnable tokens of vocabulary embedded in prompts and tuned on seen compositions. Instead of jointly tuning state and object, we devise a disentangled and recurrent tuning strategy to suppress the traction force caused by entanglement and gradually optimize the token parameters, leading to a better prompt space. Notably, we develop a progressive fine-tuning procedure that allows for incremental updates to the prompts, optimizing the object first, then the state, and vice versa. Meanwhile, the optimization of state and object is independent, thus clearer features can be learned to further alleviate the issue of entangling misleading optimization. Moreover, we quantify and analyze the entanglement in CZSL and supplement entanglement rebalancing optimization schemes. DRPT surpasses representative state-of-the-art methods on extensive benchmark datasets, demonstrating superiority in both accuracy and efficiency

    High-Temperature Oxidation Performance of 4Cr4Mo2NiMnSiV Hot Die Steel

    Get PDF
    A new type of hot working die steel was designed by using JMatPro, and high-temperature oxidation tests were carried out in the ambient atmosphere at 600 ℃ and 700 ℃. The heat treatment process and oxidation mechanism of the designed 4Cr4Mo2NiMnSiV steel were studied in detail. XRD, SEM and EDS were used to analyze the crystallographic phases, surface and cross-section morphologies of the oxide films. The results show that the main phases in the 4Cr4Mo2NiMnSiV steel were γ and α + δ. During the high-temperature oxidation, oxidation of the Fe outer layer and Cr inner layer occurred. After oxidation at 600℃, the surface oxidation layer comprised a monolayer with an uneven morphology. The surface oxide film had two layers after oxidation at 700℃. The outer oxide layer mainly contained Fe2O3 and Fe3O4, while the inner oxide layer mainly contained Cr2O3. The microstructure was relatively regular and had a significant effect on the protection of the metallic matrix. When oxidized, the 4Cr4Mo2NiMnSiV alloy steel easily formed protective layers, such as Cr2O3 and SiO2, so that the test steel had excellent oxidation resistance at high temperatures
    • …
    corecore