22 research outputs found

    Encoding Enhanced Complex CNN for Accurate and Highly Accelerated MRI

    Full text link
    Magnetic resonance imaging (MRI) using hyperpolarized noble gases provides a way to visualize the structure and function of human lung, but the long imaging time limits its broad research and clinical applications. Deep learning has demonstrated great potential for accelerating MRI by reconstructing images from undersampled data. However, most existing deep conventional neural networks (CNN) directly apply square convolution to k-space data without considering the inherent properties of k-space sampling, limiting k-space learning efficiency and image reconstruction quality. In this work, we propose an encoding enhanced (EN2) complex CNN for highly undersampled pulmonary MRI reconstruction. EN2 employs convolution along either the frequency or phase-encoding direction, resembling the mechanisms of k-space sampling, to maximize the utilization of the encoding correlation and integrity within a row or column of k-space. We also employ complex convolution to learn rich representations from the complex k-space data. In addition, we develop a feature-strengthened modularized unit to further boost the reconstruction performance. Experiments demonstrate that our approach can accurately reconstruct hyperpolarized 129Xe and 1H lung MRI from 6-fold undersampled k-space data and provide lung function measurements with minimal biases compared with fully-sampled image. These results demonstrate the effectiveness of the proposed algorithmic components and indicate that the proposed approach could be used for accelerated pulmonary MRI in research and clinical lung disease patient care

    Multi-Person Pose Estimation Using Bounding Box Constraint and LSTM

    No full text

    Phased Array Radar Resource Consumption Method Based on Phase-Switched Screen

    No full text
    The consumption of phased array radar (PAR) resources affects the accuracy of its multi-target searching and tracking abilities. The jamming methods aimed at PAR involve deceptive jamming and comprehensive jamming strategies, but have the disadvantages of high cost and complexity. Given this context, this paper proposes a PAR resource consumption method based on phase-switched screen (PSS), and derives a relationship between the targets and the evaluation indicators. By implementing periodic modulation of PSS, a controlled number of deceptive multiple false targets can be generated, thereby enticing the radar system to engage in activities such as searching and tracking targets. When the quantity of false targets is increased, the number of beam requests becomes five times higher than compared to the scenario without false targets. This has also led the margin of time resources to exceed 50%, successfully achieving the objective of consuming radar resources. Furthermore, this method offers straightforward manipulation, flexibility, and the potential to significantly consume radar resources. The efficacy of the proposed method is confirmed with the simulation outcomes

    Ultrastructure Characteristics and Sexual Dimorphism of Antennal Sensilla in Tirathaba rufivena (Lepidoptera: Pyralidae)

    No full text
    Tirathaba rufivena Walker, a major insect pest of Areca catechu L., has severely threatened areca nut cultivation in Hainan, China. To improve our understanding of the communication mechanism in host plant seeking and mate-finding for T. rufivena, we described and further characterized the external morphology and internal sensilla structures using scanning electron microscopy and transmission electron microscopy in this study. The antennal morphology was similar between males and females, and there was no significant difference in length between the two sexes. In total, nine sensilla types were identified: sensilla trichodea (Str), sensilla chaetica (Sch), sensilla basiconica (Sba), sensilla auricillica (Sau), sensilla coeloconica (Sco), sensilla styloconica (Sst), Böhm sensilla (Bs), uniporous peg sensilla (Ups) and sensilla squamiformia (Ssq). Sexual dimorphism mainly occurs in variation in the length of Sba, Sch, Sco1 and Bs, and the abundance of Sba, Sau1 and Sau2. The Sba had larger size and numbers on female antennae than that on males, suggesting that these sensilla might have important roles in locating host plants. Both Sau1 and Sau2 were significantly more abundant in females and were probably associated with the detection of mates and host plant for oviposition. These data were important for ongoing studies on host plant seeking and mate-finding behavior in T. rufivena and provided a theoretical foundation to further studies of semiochemical control for this pest

    Safety and Feasibility of Low Fluence Intense Pulsed Light for Treating Pediatric Patients with Moderate-to-Severe Blepharitis

    No full text
    To explore the safety and feasibility of low fluence intense pulsed light (IPL) for treating pediatric patients with moderate-to-severe blepharitis and to analyze potential factors associated with the recovery of meibomian glands (MG) dropout, a retrospective, noncomparative study, including 17 blepharitis patients (33 eyes) aged between 5 and 16 years old was conducted. All of the participants were given 4 continuous sessions of low-fluence (9–12 J/cm2) IPL at 3–4 week intervals. Corneal fluorescein staining (CFS), tear breakup time (BUT), inferior tear meniscus height, Demodex presence, and MG morphology were examined before and after the treatment. Results indicated that CFS, BUT and MG morphology (central/total gland area ratio and gland signal index) had significantly improved (p < 0.05). Symptoms and signs such as severe corneal neovascularization, limbal pannus and conjunctival congestion also subsided. Among age, gender, presence of Demodex and interval before diagnosis, age initiating the formal treatment was confirmed as a negatively correlated factor of the recovery of MG dropout (p = 0.032, B = −1.755). No notable adverse events were reported. In conclusion, low fluence IPL seems to be a safe and effective alternative for moderate-to-severe pediatric blepharitis, and MG dropout is prone to recover in younger patients

    A Hardware-Accelerated Solution for Hierarchical Index-Based Merge-Join

    No full text

    Morphological and Functional Changes of Meibomian Glands in Pediatric and Adult Patients with Allergic Conjunctivitis

    No full text
    Allergic conjunctivitis (AC) is one of the most common ocular disorders in clinical practice and is associated with meibomian gland dysfunction. This study aimed to explore the morphological and functional changes of meibomian glands (MGs) in pediatric and adult patients with AC and to analyze their potential predictors. In our prospective, observational cohort study, a total of 59 patients with AC were enrolled, with 30 patients aged ≤16 years in the pediatric group and 29 patients in the adult group. All patients underwent examinations at baseline and last visit when the complete resolution of conjunctival papillae was identified. An automatic MG analyzer was used to measure the morphological and functional parameters of MGs, including their area ratio (GA), tortuosity index (TI), and signal index (SI). Two groups were comparable at baseline in terms of characteristics and MG parameters (p > 0.05). The morphological (length, square, and GA) and functional MG parameters (SI) of AC patients significantly improved in the pediatric group after treatment (all p < 0.05), but not in the adult group. The change in the GA correlated with age, sex, GA, TI, and SI at baseline (all p < 0.05). Age (p = 0.001) and GA (p < 0.001) at baseline were predictors of an improvement in the GA of MGs. The findings showed that the structure and function of MGs in pediatric patients with AC seem to improve after the conjunctival papillae disappear, but not in adult patients

    Binding Properties of Odorant-Binding Protein 4 of Tirathaba rufivena to Areca catechu Volatiles

    No full text
    Odorant-binding proteins (OBPs) play a key role in the olfactory system and are essential for mating and oviposition host selection. Tirathaba rufivena, a serious lepidopterous insect pest of the palm area in recent years, has threatened cultivations of Areca catechu in Hainan. Female-biased odorant-binding protein 4 of T. rufivena (TrufOBP4) expression was hypothesized to participate in the process of oviposition host recognition and localization. In this study, we cloned and analyzed the cDNA sequence of TrufOBP4. The predicted mature protein TrufOBP4 is a small, soluble, secretory protein and belongs to a classic OBP subfamily. Fluorescence binding assay results showed that TrufOBP4 had high binding abilities with the host plant volatiles, octyl methoxycinnamate, dibutyl phthalate, myristic acid and palmitic acid. These four components tend to dock in the same binding pocket based on the molecular docking result. The interactions and contributions of key amino acid residues were also characterized. This research provides evidence that TrufOBP4 might participate in the chemoreception of volatile compounds from inflorescences of A. catechu and can contribute to the integrated management of T. rufivena
    corecore