43 research outputs found

    Regulation of Sarcoplasmic Reticulum [Ca2+] during Rest in Rabbit Ventricular Myocytes

    Get PDF

    Regulation of Sarcoplasmic Reticulum [Ca2+] during Rest in Rabbit Ventricular Myocytes

    Get PDF
    Data aproximadaPla general del passatge Pla on destaquen dues pilones d'estil Ciutat Vella, realitzades amb fosa negra

    Redox Dependent Modifications of Ryanodine Receptor: Basic Mechanisms and Implications in Heart Diseases

    Get PDF
    Heart contraction vitally depends on tightly controlled intracellular Ca regulation. Because contraction is mainly driven by Ca released from the sarcoplasmic reticulum (SR), this organelle plays a particularly important role in Ca regulation. The type two ryanodine receptor (RyR2) is the major SR Ca release channel in ventricular myocytes. Several cardiac pathologies, including myocardial infarction and heart failure, are associated with increased RyR2 activity and diastolic SR Ca leak. It has been suggested that the increased RyR2 activity plays an important role in arrhythmias and contractile dysfunction. Several studies have linked increased SR Ca leak during myocardial infarction and heart failure to the activation of RyR2 in response to oxidative stress. This activation might include direct oxidation of RyR2 as well as indirect activation via phosphorylation or altered interactions with regulatory proteins. Out of ninety cysteine residues per RyR2 subunit, twenty one were reported to be in reduced state that could be potential targets for redox modifications that include S-nitrosylation, S-glutathionylation, and disulfide cross-linking. Despite its clinical significance, molecular mechanisms of RyR dysfunction during oxidative stress are not fully understood. Herein we review the most recent insights into redox-dependent modulation of RyR2 during oxidative stress and heart diseases

    Increased Energy Demand during Adrenergic Receptor Stimulation Contributes to Ca2+ Wave Generation

    Get PDF
    AbstractWhile β-adrenergic receptor (β-AR) stimulation ensures adequate cardiac output during stress, it can also trigger life-threatening cardiac arrhythmias. We have previously shown that proarrhythmic Ca2+ waves during β-AR stimulation temporally coincide with augmentation of reactive oxygen species (ROS) production. In this study, we tested the hypothesis that increased energy demand during β-AR stimulation plays an important role in mitochondrial ROS production and Ca2+-wave generation in rabbit ventricular myocytes. We found that β-AR stimulation with isoproterenol (0.1 μM) decreased the mitochondrial redox potential and the ratio of reduced to oxidated glutathione. As a result, β-AR stimulation increased mitochondrial ROS production. These metabolic changes induced by isoproterenol were associated with increased sarcoplasmic reticulum (SR) Ca2+ leak and frequent diastolic Ca2+ waves. Inhibition of cell contraction with the myosin ATPase inhibitor blebbistatin attenuated oxidative stress as well as spontaneous SR Ca2+ release events during β-AR stimulation. Furthermore, we found that oxidative stress induced by β-AR stimulation caused the formation of disulfide bonds between two ryanodine receptor (RyR) subunits, referred to as intersubunit cross-linking. Preventing RyR cross-linking with N-ethylmaleimide decreased the propensity of Ca2+ waves induced by β-AR stimulation. These data suggest that increased energy demand during sustained β-AR stimulation weakens mitochondrial antioxidant defense, causing ROS release into the cytosol. By inducing RyR intersubunit cross-linking, ROS can increase SR Ca2+ leak to the critical level that can trigger proarrhythmic Ca2+ waves
    corecore