186 research outputs found

    Membrane fluctuations near a plane rigid surface

    Full text link
    We use analytical calculations and Monte Carlo simulations to determine the thermal fluctuation spectrum of a membrane patch of a few tens of nanometer in size, whose corners are located at a fixed distance dd above a plane rigid surface. Our analysis shows that the surface influence on the bilayer fluctuations can be effectively described in terms of a uniform confining potential that grows quadratically with the height of the membrane hh relative to the surface: V=(1/2)γh2V=(1/2)\gamma h^2. The strength γ\gamma of the harmonic confining potential vanishes when the corners of the membrane patch are placed directly on the surface (d=0d=0), and achieves its maximum value when dd is of the order of a few nanometers. However, even at maximum strength the confinement effect is quite small and has noticeable impact only on the amplitude of the largest bending mode.Comment: Accepted for publication in Phys. Rev.

    Non-monotonic fluctuation spectra of membranes pinned or tethered discretely to a substrate

    Full text link
    The thermal fluctuation spectrum of a fluid membrane coupled harmonically to a solid support by an array of tethers is calculated. For strong tethers, this spectrum exhibits non-monotonic, anisotropic behavior with a relative maximum at a wavelength about twice the tether distance. The root mean square displacement is evaluated to estimate typical membrane displacements. Possible applications cover pillar-supported or polymer-tethered membranes.Comment: 4 pages, 5 figure

    Nonequilibrium spectral diffusion due to laser heating in stimulated photon echo spectroscopy of low temperature glasses

    Full text link
    A quantitative theory is developed, which accounts for heating artifacts in three-pulse photon echo (3PE) experiments. The heat diffusion equation is solved and the average value of the temperature in the focal volume of the laser is determined as a function of the 3PE waiting time. This temperature is used in the framework of nonequilibrium spectral diffusion theory to calculate the effective homogeneous linewidth of an ensemble of probe molecules embedded in an amorphous host. The theory fits recently observed plateaus and bumps without introducing a gap in the distribution function of flip rates of the two-level systems or any other major modification of the standard tunneling model.Comment: 10 pages, Revtex, 6 eps-figures, accepted for publication in Phys. Rev.

    On Shape Transformations and Shape Fluctuations of Cellular Compartments and Vesicles

    Get PDF
    We discuss the shape formation and shape transitions of simple bilayer vesicles in context with their role in biology. In the first part several classes of shape changes of vesicles of one lipid component are described and it is shown that these can be explained in terms of the bending energy concept in particular augmented by the bilayer coupling hypothesis. In the second part shape changes and vesicle fission of vesicles composed of membranes of lipid mixtures are reported. These are explained in terms of coupling between local curvature and phase separation

    The influence of future changes in springtime Arctic ozone on stratospheric and surface climate

    Get PDF
    Stratospheric ozone is expected to recover by the mid-century due to the success of the Montreal Protocol in regulating the emission of ozone-depleting substances (ODSs). In the Arctic, ozone abundances are projected to surpass historical levels due to the combined effect of decreasing ODSs and elevated greenhouse gases (GHGs). While long-term changes in stratospheric ozone have been shown to be a major driver of future surface climate in the Southern Hemisphere during summertime, the dynamical and climatic impacts of elevated ozone levels in the Arctic have not been investigated. In this study, we use two chemistry climate models (the SOlar Climate Ozone Links – Max Planck Ocean Model (SOCOL-MPIOM) and the Community Earth System Model – Whole Atmosphere Community Climate Model (CESM-WACCM)) to assess the climatic impacts of future changes in Arctic ozone on stratospheric dynamics and surface climate in the Northern Hemisphere (NH) during the 21st century. Under the high-emission scenario (RCP8.5) examined in this work, Arctic ozone returns to pre-industrial levels by the middle of the century. Thereby, the increase in Arctic ozone in this scenario warms the lower Arctic stratosphere; reduces the strength of the polar vortex, advancing its breakdown; and weakens the Brewer–Dobson circulation. The ozone-induced changes in springtime generally oppose the effects of GHGs on the polar vortex. In the troposphere, future changes in Arctic ozone induce a negative phase of the Arctic Oscillation, pushing the jet equatorward over the North Atlantic. These impacts of future ozone changes on NH surface climate are smaller than the effects of GHGs, but they are remarkably robust among the two models employed in this study, canceling out a portion of the GHG effects (up to 20 % over the Arctic). In the stratosphere, Arctic ozone changes cancel out a much larger fraction of the GHG-induced signal (up to 50 %–100 %), resulting in no overall change in the projected springtime stratospheric northern annular mode and a reduction in the GHG-induced delay of vortex breakdown of around 15 d. Taken together, our results indicate that future changes in Arctic ozone actively shape the projected changes in the stratospheric circulation and their coupling to the troposphere, thereby playing an important and previously unrecognized role as a driver of the large-scale atmospheric circulation response to climate change.</p

    Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size

    Full text link
    We identify a class of composite membranes: fluid bilayers coupled to an elastic meshwork, that are such that the meshwork's energy is a function Fel[Aξ]F_\mathrm{el}[A_\xi] \textit{not} of the real microscopic membrane area AA, but of a \textit{smoothed} membrane's area AξA_\xi, which corresponds to the area of the membrane coarse-grained at the mesh size ξ\xi. We show that the meshwork modifies the membrane tension σ\sigma both below and above the scale ξ\xi, inducing a tension-jump Δσ=dFel/dAξ\Delta\sigma=dF_\mathrm{el}/dA_\xi. The predictions of our model account for the fluctuation spectrum of red blood cells membranes coupled to their cytoskeleton. Our results indicate that the cytoskeleton might be under extensional stress, which would provide a means to regulate available membrane area. We also predict an observable tension jump for membranes decorated with polymer "brushes"

    Field evidence for the upwind velocity shift at the crest of low dunes

    Full text link
    Wind topographically forced by hills and sand dunes accelerates on the upwind (stoss) slopes and reduces on the downwind (lee) slopes. This secondary wind regime, however, possesses a subtle effect, reported here for the first time from field measurements of near-surface wind velocity over a low dune: the wind velocity close to the surface reaches its maximum upwind of the crest. Our field-measured data show that this upwind phase shift of velocity with respect to topography is found to be in quantitative agreement with the prediction of hydrodynamical linear analysis for turbulent flows with first order closures. This effect, together with sand transport spatial relaxation, is at the origin of the mechanisms of dune initiation, instability and growth.Comment: 13 pages, 6 figures. Version accepted for publication in Boundary-Layer Meteorolog

    Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination

    Get PDF
    Among the various applications for reversible holographic storage media, a particularly interesting one is time-gated holographic imaging (TGHI). This technique could provide a noninvasive medical diagnosis tool, related to optical coherence tomography. In this technique, biological samples are illuminated within their transparency windowwith near-infrared light, and information about subsurface features is obtained by a detection method that distinguishes between reflected photons originating from a certain depth and those scattered from various depths. Such an application requires reversible holographic storage media with very high sensitivity in the near-infrared. Photorefractive materials, in particular certain amorphous organic systems, are in principle promising candidate media, but their sensitivity has so far been too low, mainly owing to their long response times in the near-infrared. Here we introduce an organic photorefractive material—a composite based on the poly(arylene vinylene) copolymer TPD-PPV—that exhibits favourable near-infrared characteristics. We show that pre-illumination of this material at a shorter wavelength before holographic recording improves the response time by a factor of 40. This process was found to be reversible. We demonstrate multiple holographic recording with this technique at video rate under practical conditions
    corecore