89 research outputs found

    MHITNet: a minimize network with a hierarchical context-attentional filter for segmenting medical ct images

    Full text link
    In the field of medical CT image processing, convolutional neural networks (CNNs) have been the dominant technique.Encoder-decoder CNNs utilise locality for efficiency, but they cannot simulate distant pixel interactions properly.Recent research indicates that self-attention or transformer layers can be stacked to efficiently learn long-range dependencies.By constructing and processing picture patches as embeddings, transformers have been applied to computer vision applications. However, transformer-based architectures lack global semantic information interaction and require a large-scale training dataset, making it challenging to train with small data samples. In order to solve these challenges, we present a hierarchical contextattention transformer network (MHITNet) that combines the multi-scale, transformer, and hierarchical context extraction modules in skip-connections. The multi-scale module captures deeper CT semantic information, enabling transformers to encode feature maps of tokenized picture patches from various CNN stages as input attention sequences more effectively. The hierarchical context attention module augments global data and reweights pixels to capture semantic context.Extensive trials on three datasets show that the proposed MHITNet beats current best practise

    One-stop stroke management platform reduces workflow times in patients receiving mechanical thrombectomy

    Get PDF
    Background and purposeClinical outcome in patients who received thrombectomy treatment is time-dependent. The purpose of this study was to evaluate the efficacy of the one-stop stroke management (OSSM) platform in reducing in-hospital workflow times in patients receiving thrombectomy compared with the traditional model.MethodsThe data of patients who received thrombectomy treatment through the OSSM platform and traditional protocol transshipment pathway were retrospectively analyzed and compared. The treatment-related time interval and the clinical outcome of the two groups were also assessed and compared. The primary efficacy endpoint was the time from door to groin puncture (DPT).ResultsThere were 196 patients in the OSSM group and 210 patients in the control group, in which they were treated by the traditional approach. The mean DPT was significantly shorter in the OSSM group than in the control group (76 vs. 122 min; P < 0.001). The percentages of good clinical outcomes at the 90-day time point of the two groups were comparable (P = 0.110). A total of 121 patients in the OSSM group and 124 patients in the control group arrived at the hospital within 360 min from symptom onset. The mean DPT and time from symptom onset to recanalization (ORT) were significantly shorter in the OSSM group than in the control group. Finally, a higher rate of good functional outcomes was achieved in the OSSM group than in the control group (53.71 vs. 40.32%; P = 0.036).ConclusionCompared to the traditional transfer model, the OSSM transfer model significantly reduced the in-hospital delay in patients with acute stroke receiving thrombectomy treatment. This novel model significantly improved the clinical outcomes of patients presenting within the first 6 h after symptom onset

    Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example

    Get PDF
    © The Author(s) 2017 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Most agronomic traits of interest for crop improvement (including seed yield) are highly complex quantitative traits controlled by numerous genetic loci, which brings challenges for comprehensively capturing associated markers/ genes. We propose that multiple trait interactions underlie complex traits such as seed yield, and that considering these component traits and their interactions can dissect individual quantitative trait loci (QTL) effects more effectively and improve yield predictions. Using a segregating rapeseed (Brassica napus) population, we analyzed a large set of trait data generated in 19 independent experiments to investigate correlations between seed yield and other complex traits, and further identified QTL in this population with a SNP-based genetic bin map. A total of 1904 consensus QTL accounting for 22 traits, including 80 QTL directly affecting seed yield, were anchored to the B. napus reference sequence. Through trait association analysis and QTL meta-analysis, we identified a total of 525 indivisible QTL that either directly or indirectly contributed to seed yield, of which 295 QTL were detected across multiple environments. A majority (81.5%) of the 525 QTL were pleiotropic. By considering associations between traits, we identified 25 yield-related QTL previously ignored due to contrasting genetic effects, as well as 31 QTL with minor complementary effects. Implementation of the 525 QTL in genomic prediction models improved seed yield prediction accuracy. Dissecting the genetic and phenotypic interrelationships underlying complex quantitative traits using this method will provide valuable insights for genomics-based crop improvement.Peer reviewedFinal Published versio

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Netting Damage Detection for Marine Aquaculture Facilities Based on Improved Mask R-CNN

    No full text
    Netting damage limits the safe development of marine aquaculture. In order to identify and locate damaged netting accurately, we propose a detection method using an improved Mask R-CNN. We create an image dataset of different kinds of damage from a mix of conditions and enhance it by data augmentation. We then introduce the Recursive Feature Pyramid (RFP) and Deformable Convolution Network (DCN) structures into the learning framework to optimize the basic backbone for a marine environment and build a feature map with both high-level semantic and low-level localization information of the network. This modification solves the problem of poor detection performance in damaged nets with small and irregular damage. Experimental results show that these changes improve the average precision of the model significantly, to 94.48%, which is 7.86% higher than the original method. The enhanced model performs rapidly, with a missing rate of about 7.12% and a detection period of 4.74 frames per second. Compared with traditional image processing methods, the proposed netting damage detection model is robust and better balances detection precision and speed. Our method provides an effective solution for detecting netting damage in marine aquaculture environments

    Performance and Energy Modeling for Cooperative Hybrid Computing

    No full text
    Accelerator-based heterogeneous systems can provide high performance and energy efficiency, both of which are key design goals in high performance computing. To fully realize the potential of heterogeneous architectures, software must optimally exploit the hosts\u27 and accelerators\u27 processing and power-saving capabilities. Yet, previous studies mainly focus on using hosts and accelerators to boost application performance. Power-saving features to improve the energy efficiency of parallel programs, such as Dynamic Voltage and Frequency Scaling (DVFS), remain largely unexplored. Recognizing that energy efficiency is a different objective than performance and should therefore be independently pursued, we study how to judiciously distribute computation between hosts and accelerators for energy optimization. We further explore energy-saving scheduling in combination with computation distribution for even larger gains. Moreover, we present PEACH, an analytical model for Performance and Energy Aware Cooperative Hybrid computing. With just a few system- and application-dependent parameters, PEACH accurately captures the performance and energy impact of computation distribution and energy-saving scheduling to quickly identify the optimal coupled strategy for achieving the best performance or the lowest energy consumption. PEACH thus eliminates the need for extensive profiling and measurement. Experimental results from two GPU-accelerated heterogeneous systems show that PEACH predicts the performance and energy of the studied codes with less than 3% error and successfully identifies the optimal strategy for a given objective

    Parameter Matching of Power Systems and Design of Vehicle Control Strategies for Mini-Electric Trucks

    No full text
    Mini-electric trucks have been widely used because of their high efficiency and zero emission with the rapid development of electronic commerce and express industry. So, improvement of dynamic performance and economy becomes crucial. The research in this field mainly focuses on passenger vehicles at present. However, most passenger vehicles are front−engine, front-drive vehicles; for mini trucks of front−engine and rear-drive, if the dynamics model of passenger vehicles is applied to mini−electric trucks, the dynamic parameters calculated will not be accurate. To enhance the accuracy of the dynamic parameters of mini-electric trucks, by combining the characteristics of mini trucks, the dynamic parameters are designed, and the types of drive motors and power batteries are selected, the dynamic model of mini−electric trucks is established. To improve the economy, control strategies, with five working modes switching, were established. On this basis, the simulation model is established, and the dynamic and economy simulation analysis and performance test were carried out. In applying the method, the error rate of maximum speed, acceleration time, and maximum gradient between simulation results and test results are 0.641% and 5.63% (15.328%), respectively, proving that the dynamic index has reached the expected value and endurance mileage is up to 295 Km under UDC conditions, increased by 5% after the vehicle control strategy was adopted. The results show that the parameter matching is reasonable and the vehicle control strategy is suitable for mini-electric trucks. The research method and conclusions can provide valuable references for the development of power systems for mini−electric trucks

    PEACH: A Model for Performance and Energy Aware Cooperative Hybrid Computing

    No full text
    Accelerator-based heterogeneous systems become increasingly important to high performance computing because of their potentials to deliver high performance and energy efficiency. To fully realize this potential, parallel software must utilize both host processors and accelerators\u27 computing power and power-aware capabilities. We develop PEACH, a model for Performance and Energy Aware Cooperative Hybrid computing. PEACH explores judicious workload distribution between hosts and accelerators and intelligent energy-aware scheduling for further performance and energy efficiency gains on heterogenous systems. With a few system- and application-dependent parameters, PEACH accurately captures the performance and energy impact of workload distribution and energy-aware scheduling
    • …
    corecore