305 research outputs found

    ResiDualGAN: Resize-Residual DualGAN for Cross-Domain Remote Sensing Images Semantic Segmentation

    Full text link
    The performance of a semantic segmentation model for remote sensing (RS) images pretrained on an annotated dataset would greatly decrease when testing on another unannotated dataset because of the domain gap. Adversarial generative methods, e.g., DualGAN, are utilized for unpaired image-to-image translation to minimize the pixel-level domain gap, which is one of the common approaches for unsupervised domain adaptation (UDA). However, the existing image translation methods are facing two problems when performing RS images translation: 1) ignoring the scale discrepancy between two RS datasets which greatly affects the accuracy performance of scale-invariant objects, 2) ignoring the characteristic of real-to-real translation of RS images which brings an unstable factor for the training of the models. In this paper, ResiDualGAN is proposed for RS images translation, where an in-network resizer module is used for addressing the scale discrepancy of RS datasets, and a residual connection is used for strengthening the stability of real-to-real images translation and improving the performance in cross-domain semantic segmentation tasks. Combined with an output space adaptation method, the proposed method greatly improves the accuracy performance on common benchmarks, which demonstrates the superiority and reliability of ResiDuanGAN. At the end of the paper, a thorough discussion is also conducted to give a reasonable explanation for the improvement of ResiDualGAN. Our source code is available at https://github.com/miemieyanga/ResiDualGAN-DRDG

    Crocs: Cross-Technology Clock Synchronization for WiFi and ZigBee

    Full text link
    Clock synchronization is a key function in embedded wireless systems and networks. This issue is equally important and more challenging in IoT systems nowadays, which often include heterogeneous wireless devices that follow different wireless standards. Conventional solutions to this problem employ gateway-based indirect synchronization, which suffers low accuracy. This paper for the first time studies the problem of cross-technology clock synchronization. Our proposal called Crocs synchronizes WiFi and ZigBee devices by direct cross-technology communication. Crocs decouples the synchronization signal from the transmission of a timestamp. By incorporating a barker-code based beacon for time alignment and cross-technology transmission of timestamps, Crocs achieves robust and accurate synchronization among WiFi and ZigBee devices, with the synchronization error lower than 1 millisecond. We further make attempts to implement different cross-technology communication methods in Crocs and provide insight findings with regard to the achievable accuracy and expected overhead

    Federated Learning Incentive Mechanism under Buyers' Auction Market

    Full text link
    Auction-based Federated Learning (AFL) enables open collaboration among self-interested data consumers and data owners. Existing AFL approaches are commonly under the assumption of sellers' market in that the service clients as sellers are treated as scarce resources so that the aggregation servers as buyers need to compete the bids. Yet, as the technology progresses, an increasing number of qualified clients are now capable of performing federated learning tasks, leading to shift from sellers' market to a buyers' market. In this paper, we shift the angle by adapting the procurement auction framework, aiming to explain the pricing behavior under buyers' market. Our modeling starts with basic setting under complete information, then move further to the scenario where sellers' information are not fully observable. In order to select clients with high reliability and data quality, and to prevent from external attacks, we utilize a blockchain-based reputation mechanism. The experimental results validate the effectiveness of our approach

    The Pulse of Mood Online: Unveiling Emotional Reactions in a Dynamic Social Media Landscape

    Full text link
    The rich and dynamic information environment of social media provides researchers, policy makers, and entrepreneurs with opportunities to learn about social phenomena in a timely manner. However, using these data to understand social behavior is difficult due to heterogeneity of topics and events discussed in the highly dynamic online information environment. To address these challenges, we present a method for systematically detecting and measuring emotional reactions to offline events using change point detection on the time series of collective affect, and further explaining these reactions using a transformer-based topic model. We demonstrate the utility of the method by successfully detecting major and smaller events on three different datasets, including (1) a Los Angeles Tweet dataset between Jan. and Aug. 2020, in which we revealed the complex psychological impact of the BlackLivesMatter movement and the COVID-19 pandemic, (2) a dataset related to abortion rights discussions in USA, in which we uncovered the strong emotional reactions to the overturn of Roe v. Wade and state abortion bans, and (3) a dataset about the 2022 French presidential election, in which we discovered the emotional and moral shift from positive before voting to fear and criticism after voting. The capability of our method allows for better sensing and monitoring of population's reactions during crises using online data.Comment: arXiv admin note: substantial text overlap with arXiv:2307.1024

    A User-Friendly Framework for Generating Model-Preferred Prompts in Text-to-Image Synthesis

    Full text link
    Well-designed prompts have demonstrated the potential to guide text-to-image models in generating amazing images. Although existing prompt engineering methods can provide high-level guidance, it is challenging for novice users to achieve the desired results by manually entering prompts due to a discrepancy between novice-user-input prompts and the model-preferred prompts. To bridge the distribution gap between user input behavior and model training datasets, we first construct a novel Coarse-Fine Granularity Prompts dataset (CFP) and propose a novel User-Friendly Fine-Grained Text Generation framework (UF-FGTG) for automated prompt optimization. For CFP, we construct a novel dataset for text-to-image tasks that combines coarse and fine-grained prompts to facilitate the development of automated prompt generation methods. For UF-FGTG, we propose a novel framework that automatically translates user-input prompts into model-preferred prompts. Specifically, we propose a prompt refiner that continually rewrites prompts to empower users to select results that align with their unique needs. Meanwhile, we integrate image-related loss functions from the text-to-image model into the training process of text generation to generate model-preferred prompts. Additionally, we propose an adaptive feature extraction module to ensure diversity in the generated results. Experiments demonstrate that our approach is capable of generating more visually appealing and diverse images than previous state-of-the-art methods, achieving an average improvement of 5% across six quality and aesthetic metrics.Comment: Accepted by The 38th Annual AAAI Conference on Artificial Intelligence (AAAI 2024

    RF-Transformer: A Unified Backscatter Radio Hardware Abstraction

    Full text link
    This paper presents RF-Transformer, a unified backscatter radio hardware abstraction that allows a low-power IoT device to directly communicate with heterogeneous wireless receivers at the minimum power consumption. Unlike existing backscatter systems that are tailored to a specific wireless communication protocol, RF-Transformer provides a programmable interface to the micro-controller, allowing IoT devices to synthesize different types of protocol-compliant backscatter signals sharing radically different PHY-layer designs. To show the efficacy of our design, we implement a PCB prototype of RF-Transformer on 2.4 GHz ISM band and showcase its capability on generating standard ZigBee, Bluetooth, LoRa, and Wi-Fi 802.11b/g/n/ac packets. Our extensive field studies show that RF-Transformer achieves 23.8 Mbps, 247.1 Kbps, 986.5 Kbps, and 27.3 Kbps throughput when generating standard Wi-Fi, ZigBee, Bluetooth, and LoRa signals while consuming 7.6-74.2 less power than their active counterparts. Our ASIC simulation based on the 65-nm CMOS process shows that the power gain of RF-Transformer can further grow to 92-678. We further integrate RF-Transformer with pressure sensors and present a case study on detecting foot traffic density in hallways. Our 7-day case studies demonstrate RFTransformer can reliably transmit sensor data to a commodity gateway by synthesizing LoRa packets on top of Wi-Fi signals. Our experimental results also verify the compatibility of RF-Transformer with commodity receivers. Code and hardware schematics can be found at: https://github.com/LeFsCC/RF-Transformer

    S2RC-GCN: A Spatial-Spectral Reliable Contrastive Graph Convolutional Network for Complex Land Cover Classification Using Hyperspectral Images

    Full text link
    Spatial correlations between different ground objects are an important feature of mining land cover research. Graph Convolutional Networks (GCNs) can effectively capture such spatial feature representations and have demonstrated promising results in performing hyperspectral imagery (HSI) classification tasks of complex land. However, the existing GCN-based HSI classification methods are prone to interference from redundant information when extracting complex features. To classify complex scenes more effectively, this study proposes a novel spatial-spectral reliable contrastive graph convolutional classification framework named S2RC-GCN. Specifically, we fused the spectral and spatial features extracted by the 1D- and 2D-encoder, and the 2D-encoder includes an attention model to automatically extract important information. We then leveraged the fused high-level features to construct graphs and fed the resulting graphs into the GCNs to determine more effective graph representations. Furthermore, a novel reliable contrastive graph convolution was proposed for reliable contrastive learning to learn and fuse robust features. Finally, to test the performance of the model on complex object classification, we used imagery taken by Gaofen-5 in the Jiang Xia area to construct complex land cover datasets. The test results show that compared with other models, our model achieved the best results and effectively improved the classification performance of complex remote sensing imagery.Comment: Accepted to IJCNN 2024 (International Joint Conference on Neural Networks

    High-efficient screening method for identification of key genes in breast cancer through microarray and bioinformatics

    Get PDF
    Background/Aim: The aim of the present study was to identify key pathways and genes in breast cancer and develop a new method for screening key genes with abnormal expression based on bioinformatics. Materials and Methods: Three microarray datasets GSE21422, GSE42568 and GSE45827 were downloaded from the Gene Expression Omnibus (GEO) database and differentially expressed genes (DEGs) were analyzed using GEO2R. The gene ontology (GO) and pathway enrichment analysis were established through DAVID database. The protein–protein interaction (PPI) network was performed through the Search Tool for the Retrieval of Interacting Genes (STRING) database and managed by Cytoscape. The overall survival (OS) analysis of the 4 genes including AURKA, CDH1, CDK1 and PPARG that had higher degrees in this network was uncovered Kaplan-Meier analysis. Results: A total of 811 DEGs were identified in breast cancer, which were enriched in biological processes, including cell cycle, mitosis, vessel development and lipid metabolic. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the up-regulated DEGs were particularly involved in cell cycle, progesterone-mediated oocyte maturation and leukocyte transendothelial migration, while the down-regulated DEGs were mainly involved in regulation of lipolysis, fatty acid degradation and glycerolipid metabolism. Through PPI network analysis, 14 hub genes were identified. Among them, the high expression of AURKA, CDH1 and CDK1 were associated with worse OS of breast cancer patients; while the high expression of PPARG was linked with better OS. Conclusion: The present study identified key pathways and genes involved in breast cancer which are potential molecular targets for breast cancer treatment and diagnosis
    corecore