29 research outputs found

    WavSpA: Wavelet Space Attention for Boosting Transformers' Long Sequence Learning Ability

    Full text link
    Transformer and its variants are fundamental neural architectures in deep learning. Recent works show that learning attention in the Fourier space can improve the long sequence learning capability of Transformers. We argue that wavelet transform shall be a better choice because it captures both position and frequency information with linear time complexity. Therefore, in this paper, we systematically study the synergy between wavelet transform and Transformers. We propose Wavelet Space Attention (WavSpA) that facilitates attention learning in a learnable wavelet coefficient space which replaces the attention in Transformers by (1) applying forward wavelet transform to project the input sequences to multi-resolution bases, (2) conducting attention learning in the wavelet coefficient space, and (3) reconstructing the representation in input space via backward wavelet transform. Extensive experiments on the Long Range Arena demonstrate that learning attention in the wavelet space using either fixed or adaptive wavelets can consistently improve Transformer's performance and also significantly outperform learning in Fourier space. We further show our method can enhance Transformer's reasoning extrapolation capability over distance on the LEGO chain-of-reasoning task

    Characterization, Expression Profiling, and Biochemical Analyses of the Cinnamoyl-CoA Reductase Gene Family for Lignin Synthesis in Alfalfa Plants

    No full text
    Cinnamoyl-CoA reductase (CCR) is a pivotal enzyme in plant lignin synthesis, which has a role in plant secondary cell wall development and environmental stress defense. Alfalfa is a predominant legume forage with excellent quality, but the lignin content negatively affects fodder digestibility. Currently, there is limited information on CCR characteristics, gene expression, and its role in lignin metabolism in alfalfa. In this study, we identified 30 members in the CCR gene family of Medicago sativa. In addition, gene structure, conserved motif, and evolution analysis suggested MsCCR1–7 presumably functioned as CCR, while the 23 MsCCR-likes fell into three categories. The expression patterns of MsCCRs/MsCCR-likes suggested their role in plant development, response to environmental stresses, and phytohormone treatment. These results were consistent with the cis-elements in their promoters. Histochemical staining showed that lignin accumulation gradually deepened with the development, which was consistent with gene expression results. Furthermore, recombinant MsCCR1 and MsCCR-like1 were purified and the kinetic parameters were tested under four substrates. In addition, three-dimensional structure models of MsCCR1 and MsCCR-like1 proteins showed the difference in the substrate-binding motif H212(X)2K215R263. These results will be useful for further application for legume forage quality modification and biofuels industry engineering in the future

    Well-Dispersed Graphene Enhanced Lithium Complex Grease Toward High-Efficient Lubrication

    No full text
    Abstract Graphene as a lubricating additive holds great potential for industrial lubrication. However, its poor dispersity and compatibility with base oils and grease hinder maximizing performance. Here, the influence of graphene dispersion on the thickening effect and lubrication function is considered. A well-dispersed lubricant additive was obtained via trihexyl tetradecyl phosphonium bis(2-ethylhexyl) phosphate modified graphene ([P66614][DEHP]-G). Then lithium complex grease was prepared by saponification with 12-OH stearic acid, sebacic acid, and lithium hydroxide, using polyalphaolefin (PAO20) as base oil and the modified-graphene as lubricating additive, with the original graphene as a comparison. The physicochemical properties and lubrication performance of the as-prepared greases were evaluated in detail. The results show that the as-prepared greases have high dropping point and colloidal stability. Furthermore, modified-graphene lithium complex grease offered the best friction reduction and anti-wear abilities, manifesting the reduction of friction coefficient and wear volume up to 18.84% and 67.34%, respectively. With base oil overflow and afflux, well-dispersed [P66614][DEHP]-G was readily adsorbed to the worn surfaces, resulting in the formation of a continuous and dense graphene deposition film. The synergy of deposited graphene-film, spilled oil, and adhesive grease greatly improves the lubrication function of grease. This research paves the way for modulating high-performance lithium complex grease to reduce the friction and wear of movable machinery

    Interference effect on Goos-HĂ€nchen shifts of anisotropic medium interface

    No full text
    We present a comprehensive analysis of the anomalous Goos-Hanchen (GH) displacement that occurs during the reflection of light beams at an interface between air and an anisotropic medium. This analysis also applies to the Imbert-Fedorov effect. Our study suggests that the anomalous GH displacement is primarily caused by polarization-dependent abnormal interference effects between the direct and cross-reflected light fields. Using the interface between air and a type II Weyl semimetal as an example, we provide a clear physical explanation for the relationship between spin-dependent abnormal interference effects and anomalous GH displacement. We demonstrate that spin-dependent constructive interference leads to a reduction in the GH displacement of the total reflected light field, while spin-dependent destructive interference results in an increase in the GH displacement of the total reflected light field

    Effect of water on the damage and energy dissipation feature of coal under uniaxial cyclic loading–unloading condition

    No full text
    Abstract To gain insight into the reduction mechanism of water on the dynamic destabilization failure character of coal under mining disturbance conditions, the effect of water on the damage and energy dissipation feature of coal was investigated via cyclic uniaxial compressive loading–unloading test, acoustic emission (AE) monitoring technology, and theoretical analysis. It manifests that the softening effect of water on the mechanical properties of coal is still remarkable, lower uniaxial compressive strength and elastic modulus, while greater axial strain and higher Poisson's ratio are observed under the cyclic loading–unloading condition. Water‐saturated specimens dissipate more energy during the cyclic loading–unloading process, which reduces the proportion of input energy accumulated in the coal mass, thus lowering the burst proneness of coal. A greater amount of damage generates in air‐dried specimens than that in water‐saturated specimens at the first cyclic loading–unloading cycle, while lower damage increments are observed in the following cycles. This may be the reason for the minimal energy dissipation of air‐dried specimens in the following cycles. The elastic modulus behaves logarithmically versus the increasing cyclic loading–unloading cycle counts. The energy dissipated due to the damage evolution and plastic deformation of coal specimens positively correlates with the energy released by AE activities, the AE energy in air‐dried specimens has a greater concentration around the peak axial stress and a stronger correlation with the dissipated energy. The cumulative AE energy and energy dissipation density are linearly correlated during the cyclic loading–unloading process, which indicates a possibility in estimating the damage evolution and the dynamic failure risk of coal via cumulative AE energy, under the cyclic loading–unloading condition

    Thermal Characteristic Simulation Study of Multicolumn Parallel Zinc Oxide Arresters under Extreme Operating Conditions

    No full text
    The arrester plays an important role in the protection of the DC transmission system, and its thermal characteristics under different operating conditions greatly affect its performance. To study the thermal characteristics of multicolumn parallel arresters under extreme operating conditions in a DC system, considering the influence of SF6 fluid, the structural parameters of the ±500 kV Niu Cong DC transmission project were applied for this research. Firstly, a 3D model of the four-column parallel zinc oxide arrester installed on the neutral bus of the ±500 kV Niu Cong DC transmission project was built in ANSYS to analyze its thermal conduction. Then, the electromagnetic transient model of the Niu Cong DC transmission system was established in PSCAD to study the withstood energy of a four-column parallel zinc oxide arrester under 22 typical fault conditions in three operation modes. Based on the extreme operating conditions obtained, simulations of steady-state and transient thermal characteristics were performed considering the influence of SF6 fluid flow on the heat dissipation of the arrester. Finally, the field-test temperature test on the four-column parallel zinc oxide arrester was carried out to validate the effectiveness of the proposed simulation model and calculation method, with simulation data matching well with the field-test data. The results also conclude the thermal characteristics findings to reveal the thermal conduction of multicolumn arresters under extreme operating conditions

    Long-Chain Bio-Based Nylon 514 Salt: Crystal Structure, Phase Transformation, and Polymerization

    No full text
    Nylon 514 is one of the new long-chain bio-based nylon materials; its raw material, 1,5-pentanediamine (PDA), is prepared by biological techniques, using biomass as the raw material. The high-performance monomer of nylon 514, 1,5-pentanediamine-tetradecanedioate (PDA-TDA) salt, was obtained through efficient crystallization methods. Here, two crystal forms of PDA-TDA, anhydrous and dihydrate, were identified and studied in this paper. From the characterization data, their crystal structures and thermal behaviors were investigated. Lattice energy was calculated to gain further insight into the relationship between thermal stability and crystal structures. The contribution of hydrogen bonds and other intermolecular interactions to the crystal structure stability have been quantified according to detailed Hirshfeld and IRI analyses. Additionally, the transformation mechanism of the anhydrate and dihydrate was established through a series of well-designed stability experiments, in which the temperature and water activity play a significant role in the structural stability of crystalline forms. Eventually, we obtained nylon 514 products with good thermal stability and low absorption using stable dihydrate powders as monomers. The properties of nylon 514 products prepared by different polymerization methods were also compared
    corecore