900 research outputs found

    Long-acting reversible contraception use among residents in obstetrics/gynecology training programs

    Get PDF
    Background: The objective of the study was to estimate the personal usage of long-acting reversible contraception (LARC) among obstetrics and gynecology (Ob/Gyn) residents in the United States and compare usage between programs with and without a Ryan Residency Training Program (Ryan Program), an educational program implemented to enhance resident training in family planning. Materials and methods: We performed a web-based, cross-sectional survey to explore contraceptive use among Ob/Gyn residents between November and December 2014. Thirty-two Ob/Gyn programs were invited to participate, and 24 programs (75%) agreed to participate. We divided respondents into two groups based on whether or not their program had a Ryan Program. We excluded male residents without a current female partner as well as residents who were currently pregnant or trying to conceive. We evaluated predictors of LARC use using bivariate analysis and multivariable Poisson regression. Results: Of the 638 residents surveyed, 384 (60.2%) responded to our survey and 351 were eligible for analysis. Of those analyzed, 49.3% (95% confidence interval [CI]: 44.1%, 54.5%) reported current LARC use: 70.0% of residents in Ryan Programs compared to 26.8% in non-Ryan Programs (RRadj 2.14, 95% CI 1.63-2.80). Residents reporting a religious affiliation were less likely to use LARC than those who described themselves as non-religious (RRadj 0.76, 95% CI 0.64-0.92). Of residents reporting LARC use, 91% were using the levonorgestrel intrauterine device. Conclusion: LARC use in this population of women's health specialists is substantially higher than in the general population (49% vs. 12%). Ob/Gyn residents in programs affiliated with the Ryan Program were more likely to use LARC

    Acceleration Of Protons To Above 6 MeV Using H2O >Snow> Nanowire Targets

    Get PDF
    A scheme is presented for using H2O >snow> nanowire targets for the generation of fast protons. This novel method may relax the requirements for very high laser intensities, thus reducing the size and cost of laser based ion acceleration system.Physic

    Results at 24 months from the prospective, randomized, multicenter Investigational Device Exemption trial of ProDisc-C versus anterior cervical discectomy and fusion with 4-year follow-up and continued access patients.

    Get PDF
    BackgroundCervical total disk replacement (TDR) is intended to address pain and preserve motion between vertebral bodies in patients with symptomatic cervical disk disease. Two-year follow-up for the ProDisc-C (Synthes USA Products, LLC, West Chester, Pennsylvania) TDR clinical trial showed non-inferiority versus anterior cervical discectomy and fusion (ACDF), showing superiority in many clinical outcomes. We present the 4-year interim follow-up results.MethodsPatients were randomized (1:1) to ProDisc-C (PDC-R) or ACDF. Patients were assessed preoperatively, and postoperatively at 6 weeks and 3, 6, 12, 18, 24, 36, and 48 months. After the randomized portion, continued access (CA) patients also underwent ProDisc-C implantation, with follow-up visits up to 24 months. Evaluations included Neck Disability Index (NDI), Visual Analog Scale (VAS) for pain/satisfaction, and radiographic and physical/neurologic examinations.ResultsRandomized patients (103 PDC-R and 106 ACDF) and 136 CA patients were treated at 13 sites. VAS pain and NDI score improvements from baseline were significant for all patients (P < .0001) but did not differ among groups. VAS satisfaction was higher at all time points for PDC-R versus ACDF patients (P = .0499 at 48 months). The percentage of patients who responded yes to surgery again was 85.6% at 24 months and 88.9% at 48 months in the PDC-R group, 80.9% at 24 months and 81.0% at 48 months in the ACDF group, and 86.3% at 24 months in the CA group. Five PDC-R patients (48 months) and no CA patients (24 months) had index-level bridging bone. By 48 months, approximately 4-fold more ACDF patients required secondary surgery (3 of 103 PDC-R patients [2.9%] vs 12 of 106 ACDF patients [11.3%], P = .0292). Of these, 6 ACDF patients (5.6%) required procedures at adjacent levels. Three CA patients required secondary procedures (24 months).ConclusionsOur 4-year data support that ProDisc-C TDR and ACDF are viable surgical options for symptomatic cervical disk disease. Although ACDF patients may be at higher risk for additional surgical intervention, patients in both groups show good clinical results at longer-term follow-up

    Characterization of self-injected electron beams from LWFA experiments at SPARC_LAB

    Full text link
    The plasma-based acceleration is an encouraging technique to overcome the limits of the accelerating gradient in the conventional RF acceleration. A plasma accelerator is able to provide accelerating fields up to hundreds of GeV/mGeV/m, paving the way to accelerate particles to several MeV over a short distance (below the millimetre range). Here the characteristics of preliminary electron beams obtained with the self-injection mechanism produced with the FLAME high-power laser at the SPARC_LAB test facility are shown. In detail, with an energy laser on focus of 1.5 J1.5\ J and a pulse temporal length (FWHM) of 40 fs40\ fs, we obtained an electron plasma density due to laser ionization of about 6×1018 cm36 \times 10^{18}\ cm^{-3}, electron energy up to 350 MeV350\ MeV and beam charge in the range (50100) pC(50 - 100)\ pC.Comment: 6 pages, 11 figures, conference EAAC201

    5.5-7.5 MeV Proton generation by a moderate intensity ultra-short laser interaction with H2O nano-wire targets

    Full text link
    We report on the first generation of 5.5-7.5 MeV protons by a moderate intensity short-pulse laser (4.5 \times 1017 W/cm^2, 50 fsec) interacting with H2O nano-wires (snow) deposited on a Sapphire substrate. In this setup, the laser intensity is locally enhanced by the tip of the snow nano-wire, leading to high spatial gradients. Accordingly, the plasma near the tip is subject to enhanced ponderomotive potential, and confined charge separation is obtained. Electrostatic fields of extremely high intensities are produced over the short scale length, and protons are accelerated to MeV-level energies.Comment: submitted to PRL, under press embargo. 6 figure

    Plasma ramps caused by outflow in gas-filled capillaries

    Full text link
    Plasma confinement inside capillaries has been developed in the past years for plasma-based acceleration to ensure a stable and repeatable plasma density distribution during the interaction with either particles or laser beams. In particular, gas-filled capillaries allow a stable and almost predictable plasma distribution along the interaction with the particles. However, the plasma ejected through the ends of the capillary interacts with the beam before the inner plasma, affecting the quality of the beam. In this article we report the measurements on the evolution of the plasma flow at the two ends of a 1 cm long, 1 mm diameter capillary filled with hydrogen. In particular, we measured the longitudinal density distribution and the expansion velocity of the plasma outside the capillary. This study will allow a better understanding of the beam-plasma interaction for future plasma-based experiments.Comment: 5 pages, 6 figures, EAAC 201

    Frontiers of beam diagnostics in plasma accelerators: measuring the ultra-fast and ultra-cold

    Get PDF
    Advanced diagnostics are essential tools in the development of plasma-based accelerators. The accurate measurement of the quality of beams at the exit of the plasma channel is crucial to optimize the parameters of the plasma accelerator. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement, which is particularly complex due to large energy spread and divergence of the emerging beams, and on femtosecond bunch length measurements
    corecore