1 research outputs found

    Critical surfaces for general inhomogeneous bond percolation problems

    Full text link
    We present a method of general applicability for finding exact or accurate approximations to bond percolation thresholds for a wide class of lattices. To every lattice we sytematically associate a polynomial, the root of which in [0,1][0,1] is the conjectured critical point. The method makes the correct prediction for every exactly solved problem, and comparison with numerical results shows that it is very close, but not exact, for many others. We focus primarily on the Archimedean lattices, in which all vertices are equivalent, but this restriction is not crucial. Some results we find are kagome: pc=0.524430...p_c=0.524430..., (3,122):pc=0.740423...(3,12^2): p_c=0.740423..., (33,42):pc=0.419615...(3^3,4^2): p_c=0.419615..., (3,4,6,4):pc=0.524821...(3,4,6,4):p_c=0.524821..., (4,82):pc=0.676835...(4,8^2):p_c=0.676835..., (32,4,3,4)(3^2,4,3,4): pc=0.414120...p_c=0.414120... . The results are generally within 10−510^{-5} of numerical estimates. For the inhomogeneous checkerboard and bowtie lattices, errors in the formulas (if they are not exact) are less than 10−610^{-6}.Comment: Submitted to J. Stat. Mec
    corecore