22 research outputs found
Cryogenic Safety - HSE seminar
The flow of cold helium in pipes is a fundamental issue of any cryogenic installation. Pipelines for helium transportation can reach lengths of hundreds of meters. The proper selection of size for individual pipelines and safety valves is a crucial part in the consideration of costs for the entire installation and its safe operation. The size of the safety valve must be properly designed in order to avoid a dangerous pressure buildup during normal operation, as well as in the case of emergency. The most commonly occurring dangerous situation is an undesired heat flux in the helium as a result of a broken insulation. In this case, the heat flux can be very intense and the buildup of the pressure in the pipe can be very rapid. In the present work, numerical calculations were used to evaluate the buildup of pressure and temperature in the pipe, in the case of a sudden and intense heat flux. The main goal of the applied numerical procedure was to evaluate the proper sizes of the safety valves in order to avoid a rise in pressure above the safety limit. The proposed numerical model and calculations were based on OpenFOAM, an open source CFD toolbox
Cryogenic Safety - HSE seminar
The presented work focuses on the risk analysis and the consequences of the unexpected leak to the tunnel of cryogenics gases. Formation of the gas mixture and its propagation along tunnels is an important issue for the safe operation of cryogenic machines, including superconducting accelerators or free electron lasers. As the cryogenics gas the helium and argon will be considered. A minimal numerical model will be presented and discussed. Series of numerical results related to emergency helium relief to the CERN tunnel and related to unexpected leak of the argon to an underground tunnel, will be shown. The numerical results will show temperature distribution, oxygen deficiency and gas cloud propagation in function of intensity of the leak and intensity of the ventilation
Risks for a Successful Transition to a Net-Zero Emissions Energy System
The year 2021 brought a significant increase in CO2 emissions despite the rapid growth of new renewable energy sources (RES) installations being commissioned [...
Turbulence and Fluid Mechanics
This Special Issue of Energies features 11 scientific papers on the subject of turbulence and fluid mechanics [...
Numerical Analysis Of Mixing Under Low And High Frequency Pulsations At Serpentine Micromixers
The numerical investigation of the mixing process in complex geometry micromixers, as a function of various inlet conditions and various micromixer vibrations, was performed. The examined devices were two-dimensional (2D) and three-dimensional (3D) types of serpentine micromixers with two inlets. Entering fluids were perturbed with a wide range of the frequency (0 - 50 Hz) of pulsations. Additionally, mixing fluids also entered in the same or opposite phase of pulsations. The performed numerical calculations were 3D to capture the proximity of all the walls, which has a substantial influence on microchannel flow. The geometry of the 3D type serpentine micromixer corresponded to the physically existing device, characterised by excellent mixing properties but also a challenging production process (Malecha et al., 2009). It was shown that low-frequency perturbations could improve the average mixing efficiency of the 2D micromixer by only about 2% and additionally led to a disadvantageously non-uniform mixture quality in time. It was also shown that high-frequency mixing could level these fluctuations and more significantly improve the mixing quality. In the second part of the paper a faster and simplified method of evaluation of mixing quality was introduced. This method was based on calculating the length of the contact interface between mixing fluids. It was used to evaluate the 2D type serpentine micromixer performance under various types of vibrations and under a wide range of vibration frequencies
Using Artificial Intelligence to Predict the Aerodynamic Properties of Wind Turbine Profiles
This study describes the use of artificial intelligence to predict the aerodynamic properties of wind turbine profiles. The goal was to determine the lift coefficient for an airfoil using its geometry as input. Calculations based on XFoil were taken as a target for the predictions. The lift coefficient for a single case scenario was set as a value to find by training an algorithm. Airfoil geometry data were collected from the UIUC Airfoil Data Site. Geometries in the coordinate format were converted to PARSEC parameters, which became a direct feature for the random forest regression algorithm. The training dataset included 60% of the base dataset records. The rest of the dataset was used to test the model. Five different datasets were tested. The results calculated for the test part of the base dataset were compared with the actual values of the lift coefficients. The developed prediction model obtained a coefficient of determination ranging from 0.83 to 0.87, which is a good prognosis for further research
Modeling of Wind Turbine Interactions and Wind Farm Losses Using the Velocity-Dependent Actuator Disc Model
This paper analyzes the interaction of wind turbines and losses in wind farms using computational fluid dynamics (CFD). The mathematical model used consisted of three-dimensional Reynolds-averaged Navier–Stokes (RANS) equations, while the presence of wind turbines in the flow was simulated as additional source terms. The novelty of the research is the definition of the source term as a velocity-dependent actuator disc model (ADM). This allowed for modeling the operation of a wind farm consisting of real wind turbines, characterized by power coefficients Cp and thrust force coefficients CT, which are a function of atmospheric wind speed. The calculations presented used a real 5 MW Gamesa turbine. Two different turbine spacings, 5D and 10D, where D is the diameter of the turbine, and two different locations corresponding to the offshore and onshore conditions were examined. The proposed model can be used to analyze wind farm losses not only in terms of the geometric distribution of individual turbines but also in terms of a specific type of wind turbine and in the entire wind speed spectrum
Cryogenic energy storage system coupled with packed-bed cold storage
Cryogenic Energy Storage (CES) systems are able to improve the stability of electrical grids with large shares of intermittent power plants. In CES systems, excess electrical energy can be used in the liquefaction of cryogenic fluids, which may be stored in large cryogenic vessels for long periods of time. When the demand for electricity is high, work is recovered from the cryogen during a power cycle using ambient or waste heat as an upper heat source. Most research is focused on liquid air energy storage (LAES). However, natural gas can also be a promising working fluid for the CES system. This paper presents a natural gas-based CES system, coupled with a low temperature packed bed cold storage unit. The cold, which is stored at a low temperature level, can be used to increase the efficiency of the cryogenic liquefiers. The model for the packed bed in a high grade cold storage unit was implemented and then compared with the experimental data. The impact of cold recycling on the liquefaction yield and efficiency of the cryogenic energy storage system was investigate
Cryogenic energy storage system coupled with packed-bed cold storage
Cryogenic Energy Storage (CES) systems are able to improve the stability of electrical grids with large shares of intermittent power plants. In CES systems, excess electrical energy can be used in the liquefaction of cryogenic fluids, which may be stored in large cryogenic vessels for long periods of time. When the demand for electricity is high, work is recovered from the cryogen during a power cycle using ambient or waste heat as an upper heat source. Most research is focused on liquid air energy storage (LAES). However, natural gas can also be a promising working fluid for the CES system. This paper presents a natural gas-based CES system, coupled with a low temperature packed bed cold storage unit. The cold, which is stored at a low temperature level, can be used to increase the efficiency of the cryogenic liquefiers. The model for the packed bed in a high grade cold storage unit was implemented and then compared with the experimental data. The impact of cold recycling on the liquefaction yield and efficiency of the cryogenic energy storage system was investigate
Leading-Edge Vortex Controller (LEVCON) Influence on the Aerodynamic Characteristics of a Modern Fighter Jet
The purpose of this paper is to assess the influence of a novel type of vortex creation device called the leading-edge vortex controller (LEVCON) on the aerodynamic characteristics of a fighter jet. LEVCON has become a trending term in modern military aircraft in recent years and is a continuation of an existing and widely used aerodynamic solution called the leading-edge root extension (LERX). LEVCON is designed to operate on the same principles as LERX, but its aim is to generate lift-augmenting vortices, i.e., vortex lift, at higher angles of attack than LERX. To demonstrate the methodology, a custom delta wing fighter aircraft is introduced, and details about its aerodynamic configuration are provided. The LEVCON geometry is designed and then incorporated into an existing three-dimensional (3D) model of the aircraft in question. The research is conducted using OpenFOAM 8, a high-fidelity computational fluid dynamics (CFD) open-source software. The computational cases are designed to simulate the aircraft’s flight at stall velocities within a high range of angles of attack. The results are assessed and discussed in terms of aerodynamic characteristics. A conclusion is drawn from the analysis regarding the perceived improvements in fighter jet aerodynamics. The analysis reveals that both lift and critical angle of attack can be manipulated positively. With the addition of LEVCON, the average lift gain in the high angle of attack (α) range is between 8.5% and 10%, while the peak gain reaches 19.4%. The critical angle of attack has also increased by 2°, and a flatter stall characteristic has been achieved