13 research outputs found
Recommended from our members
Assessing potential indicators of aerosol wet scavenging during long-range transport
As one of the dominant sinks of aerosol particles, wet scavenging greatly influences aerosol lifetime and interactions with clouds, precipitation, and radiation. However, wet scavenging remains highly uncertain in models, hindering accurate predictions of aerosol spatiotemporal distributions and downstream interactions. In this study, we present a flexible, computationally inexpensive method to identify meteorological variables relevant for estimating wet scavenging using a combination of aircraft, satellite, and reanalysis data augmented by trajectory modeling to account for air mass history. We assess the capabilities of an array of meteorological variables to predict the transport efficiency of black carbon (TEBC) using a combination of nonlinear regression, curve fitting, and k-fold cross-validation. We find that accumulated precipitation along trajectories (APT) - treated as a wet scavenging indicator across multiple studies - does poorly when predicting TEBC. Among different precipitation characteristics (amount, frequency, intensity), precipitation intensity was the most effective at estimating TEBC but required longer trajectories (>48h) and including only intensely precipitating grid cells. This points to the contribution of intense precipitation to aerosol scavenging and the importance of accounting for air mass history. Predictors that were most able to predict TEBC were related to the distribution of relative humidity (RH) or the frequency of humid conditions along trajectories, suggesting that RH is a more robust way to estimate TEBC than APT. We recommend the following alternatives to APT when estimating aerosol scavenging: (1) the 90th percentile of RH along trajectories, (2) the fraction of hours along trajectories with either water vapor mixing ratios>15gkg-1 or RH>95%, and (3) precipitation intensity along trajectories at least 48h along and filtered for grid cells with precipitation>0.2mmh-1. Future scavenging parameterizations should consider these meteorological variables along air mass histories. This method can be repeated for different regions to identify region-specific factors influencing wet scavenging. © 2024 Miguel Ricardo A. Hilario et al.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Dilution of Boundary Layer Cloud Condensation Nucleus Concentrations by Free Tropospheric Entrainment During Marine Cold Air Outbreaks
Recent aircraft measurements over the northwest Atlantic enable an investigation of how entrainment from the free troposphere (FT) impacts cloud condensation nucleus (CCN) concentrations in the marine boundary layer (MBL) during cold-air outbreaks (CAOs), motivated by the role of CCN in mediating transitions from closed to open-cell regimes. Observations compiled over eight flights indicate predominantly far lesser CCN concentrations in the FT than in the MBL. For one flight, a fetch-dependent MBL-mean CCN budget is compiled from estimates of sea-surface fluxes, entrainment of FT air, and hydrometeor collision-coalescence, based on in-situ and remote-sensing measurements. Results indicate a dominant role of FT entrainment in reducing MBL CCN concentrations, consistent with satellite-observed trends in droplet number concentration upwind of CAO cloud-regime transitions over the northwest Atlantic. Relatively scant CCN may widely be associated with FT dry intrusions, and should accelerate cloud-regime transitions where underlying MBL air is CCN-rich, thereby reducing regional albedo. © 2022. American Geophysical Union. All Rights Reserved.6 month embargo; first published: 31 May 2022This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Analysis of MONARC and ACTIVATE Airborne Aerosol Data for Aerosol-Cloud Interaction Investigations: Efficacy of Stairstepping Flight Legs for Airborne In Situ Sampling
A challenging aspect of conducting airborne in situ observations of the atmosphere is how to optimize flight plans for specific objectives and constraints associated with weather and flight restrictions. For aerosol-cloud interaction research, two recent campaigns utilized a “stairstepping” approach whereby an aircraft conducts level legs at various altitudes while moving forward with each subsequent leg: the 2019 MONterey Aerosol Research Campaign (MONARC) over the northeast Pacific and the 2020–2022 Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) over the northwest Atlantic. We examine the homogeneity of several atmospheric variables both vertically and horizontally in the marine boundary layer with a focus on the sub-cloud environment. In well-mixed boundary layers, there was generally good horizontal and vertical homogeneity in potential temperature, winds, water vapor mixing ratio, various trace gases, and many aerosol variables. Selected aerosol variables exhibited the most variability owing to sensitivity to humidity and near-cloud conditions (supermicrometer aerosol concentrations), coastal pollution gradients (e.g., organic aerosol mass), and small spatial scale phenomena such as new particle formation (aerosol number concentration for particles with diameter >3 nm). Illustrative cases are described when stairstepping can pose issues requiring extra caution for data analysis: (i) poor vertical mixing and layers decoupled from those below; (ii) multiple cloud layers; (iii) fluctuating cloud base/top and boundary layer top heights; and (iv) horizontal variability across specific features leading to sharp gradients such as right near coastlines and over the Gulf Stream with strong sea surface temperature changes. Results from this study provide a guide both for future studies aiming to examine these mission datasets and for designing new airborne campaigns. © 2022 by the authors.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Cold Air Outbreaks Promote New Particle Formation Off the U.S. East Coast
New particle formation (NPF) is the dominant contributor to total particle number concentration and plays an important role in the cloud condensation nuclei budget. Airborne data from Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) are used to address seasonal NPF statistics and factors related to NPF in and around clouds. Higher ratios of particle concentrations greater than 3 versus 10 nm (N3/N10) were mainly observed above boundary layer cloud tops during winter as compared to summer. Cold dry air and low aerosol surface area concentration facilitate NPF over the ACTIVATE region; these conditions are especially prevalent during flights coinciding with cold air outbreaks. © 2022. American Geophysical Union. All Rights Reserved.6 month embargo; published online: 02 March 2022This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic
To determine the impact of dynamic and aerosol processes on marine low clouds, we examine the seasonal impact of updraft speed w and cloud condensation nuclei concentration at 0.43 % supersaturation (NCCN0.43%) on the cloud droplet number concentration (NC) of low-level clouds over the western North Atlantic Ocean. Aerosol and cloud properties were measured with instruments on board the NASA LaRC Falcon HU-25 during the ACTIVATE (Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment) mission in summer (August) and winter (February-March) 2020. The data are grouped into different NCCN0.43% loadings, and the density functions of NC and w near the cloud bases are compared. For low updrafts (w 3 ms-1), NC is impacted by the aerosol population, while at clean marine conditions cloud nucleation is aerosol-limited, and for high NCCN0.43% it is influenced by aerosols and updraft. The aerosol size distribution in winter shows a bimodal distribution in clean marine environments, which transforms to a unimodal distribution in high NCCN0.43% due to chemical and physical aerosol processes, whereas unimodal distributions prevail in summer, with a significant difference in their aerosol concentration and composition. The increase of NCCN0.43% is accompanied with an increase of organic aerosol and sulfate compounds in both seasons. We demonstrate that NC can be explained by cloud condensation nuclei activation through upwards processed air masses with varying fractions of activated aerosols. The activation highly depends on w and thus supersaturation between the different seasons, while the aerosol size distribution additionally affects NC within a season. Our results quantify the seasonal influence of w and NCCN0.43% on NC and can be used to improve the representation of low marine clouds in models. © 2022 Simon Kirschler et al.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Assessment of NAAPS-RA performance in Maritime Southeast Asia during CAMP2Ex
Monitoring and modeling aerosol particle life cycle in Southeast Asia (SEA) is challenged by high cloud cover, complex meteorology, and the wide range of aerosol species, sources, and transformations found throughout the region. Satellite observations are limited, and there are few in situ observations of aerosol extinction profiles, aerosol properties, and environmental conditions. Therefore, accurate aerosol model outputs are crucial for the region. This work evaluates the Navy Aerosol Analysis and Prediction System Reanalysis (NAAPS-RA) aerosol optical thickness (AOT) and light extinction products using airborne aerosol and meteorological measurements from the Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex) conducted in 2019 during the SEA southwest monsoon biomass burning season. Modeled AOTs and extinction coefficients are compared to those retrieved with a high spectral resolution lidar (HSRL-2). Agreement between simulated and retrieved AOT (R2Combining double low line 0.78, relative bias Combining double low line-5 %, normalized root mean square error (NRMSE) Combining double low line 48 %) and aerosol extinction coefficients (R2Combining double low line 0.80, 0.81, and 0.42; relative bias Combining double low line 3 %, -6 %, and -7 %; NRMSE Combining double low line 47 %, 53 %, and 118 % for altitudes between 40-500, 500-1500, and >1500 m, respectively) is quite good considering the challenging environment and few opportunities for assimilations of AOT from satellites during the campaign. Modeled relative humidities (RHs) are negatively biased at all altitudes (absolute bias Combining double low line-5 %, -8 %, and -3 % for altitudes 1500 m, respectively), motivating interest in the role of RH errors in AOT and extinction simulations. Interestingly, NAAPS-RA AOT and extinction agreement with the HSRL-2 does not change significantly (i.e., NRMSE values do not all decrease) when RHs from dropsondes are substituted into the model, yet biases all move in a positive direction. Further exploration suggests changes in modeled extinction are more sensitive to the actual magnitude of both the extinction coefficients and the dropsonde RHs being substituted into the model as opposed to the absolute differences between simulated and measured RHs. Finally, four case studies examine how model errors in RH and the hygroscopic growth parameter, γ, affect simulations of extinction in the mixed layer (ML). We find NAAPS-RA overestimates the hygroscopicity of (i) smoke particles from biomass burning in the Maritime Continent (MC) and (ii) anthropogenic emissions transported from East Asia. This work mainly provides insight into the relationship between errors in modeled RH and simulations of AOT and extinction in a humid and tropical environment influenced by a myriad of meteorological conditions and particle types. These results can be interpreted and addressed by the modeling community as part of the effort to better understand, quantify, and forecast atmospheric conditions in SEA. Copyright © 2022 Eva-Lou Edwards et al.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Measurement report: Closure analysis of aerosol-cloud composition in tropical maritime warm convection
Cloud droplet chemical composition is a key observable property that can aid understanding of how aerosols and clouds interact. As part of the Clouds, Aerosols and Monsoon Processes - Philippines Experiment (CAMP2Ex), three case studies were analyzed involving collocated airborne sampling of relevant clear and cloudy air masses associated with maritime warm convection. Two of the cases represented a polluted marine background, with signatures of transported East Asian regional pollution, aged over water for several days, while the third case comprised a major smoke transport event from Kalimantan fires. Sea salt was a dominant component of cloud droplet composition, in spite of fine particulate enhancement from regional anthropogenic sources. Furthermore, the proportion of sea salt was enhanced relative to sulfate in rainwater and may indicate both a propensity for sea salt to aid warm rain production and an increased collection efficiency of large sea salt particles by rain in subsaturated environments. Amongst cases, as precipitation became more significant, so too did the variability in the sea salt to (non-sea salt) sulfate ratio. Across cases, nitrate and ammonium were fractionally greater in cloud water than fine-mode aerosol particles; however, a strong covariability in cloud water nitrate and sea salt was suggestive of prior uptake of nitrate on large salt particles. A mass-based closure analysis of non-sea salt sulfate compared the cloud water air-equivalent mass concentration to the concentration of aerosol particles serving as cloud condensation nuclei for droplet activation. While sulfate found in cloud was generally constrained by the sub-cloud aerosol concentration, there was significant intra-cloud variability that was attributed to entrainment - causing evaporation of sulfate-containing droplets - and losses due to precipitation. In addition, precipitation tended to promote mesoscale variability in the sub-cloud aerosol through a combination of removal, convective downdrafts, and dynamically driven convergence. Physical mechanisms exerted such strong control over the cloud water compositional budget that it was not possible to isolate any signature of chemical production/loss using in-cloud observations. The cloud-free environment surrounding the non-precipitating smoke case indicated sulfate enhancement compared to convective mixing quantified by a stable gas tracer; however, this was not observed in the cloud water (either through use of ratios or the mass closure), perhaps implying that the warm convective cloud timescale was too short for chemical production to be a leading-order budgetary term and because precursors had already been predominantly exhausted. Closure of other species was truncated by incomplete characterization of coarse aerosol (e.g., it was found that only 10 %-50 % of sea salt mass found in cloud was captured during clear-air sampling) and unmeasured gas-phase abundances affecting closure of semi-volatile aerosol species (e.g., ammonium, nitrate and organic) and soluble volatile organic compound contributions to total organic carbon in cloud water. © Copyright:Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Aircraft Observations of Turbulence in Cloudy and Cloud-Free Boundary Layers Over the Western North Atlantic Ocean From ACTIVATE and Implications for the Earth System Model Evaluation and Development
This study examines boundary layer turbulence derived from high temporal resolution meteorological measurements from 40 research flights over the western North Atlantic Ocean during the 2020 deployments of ACTIVATE. Frequency distributions of various turbulent quantities reveal stronger turbulence during the winter deployment than in summer and for cloud-topped than in cloud-free boundary layers during the summer deployment. Maximum turbulence kinetic energy (TKE) is most often within cloud from observations in winter and summer, whereas it is mostly below cloud in both seasons by a global model turbulence parameterization. Bivariate frequency distributions are consistent with the bivariate Gaussian probability distribution functions assumed for the closure of higher-order turbulence/shallow convection parameterizations used by some global models. Turbulence simulated by the Community Atmosphere Model version 6 and the Energy Exascale Earth System Model Atmosphere Model version 2 using such parameterizations is not as strong as observed, with more TKE going into vertical wind perturbations rather than into zonal wind perturbations as observed, suggesting that the treatment of turbulence in Earth system models still needs to be further improved. © 2022. American Geophysical Union. All Rights Reserved.6 month embargo; first published: 15 September 2022This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part II: Aerosol-Meteorology-Cloud Interaction
Aerosol effects on micro/macrophysical properties of marine stratocumulus clouds over the western North Atlantic Ocean (WNAO) are investigated using in situ measurements and large-eddy simulations (LES) for two cold-air outbreak (CAO) cases (28 February and 1 March 2020) during the Aerosol Cloud Meteorology Interactions over the Western Atlantic Experiment (ACTIVATE). The LES is able to reproduce the vertical profiles of liquid water content (LWC), effective radius reff and cloud droplet number concentration Nc from fast cloud droplet probe (FCDP) in situ measurements for both cases. Furthermore, we show that aerosols affect cloud properties (Nc, reff, and LWC) via the prescribed bulk hygroscopicity of aerosols (k) and aerosol size distribution characteristics. Nc, reff, and liquid water path (LWP) are positively correlated to k and aerosol number concentration (Na) while cloud fractional cover (CFC) is insensitive to k and aerosol size distributions for the two cases. The realistic changes to aerosol size distribution (number concentration, width, and the geometrical diameter) with the same meteorology state allow us to investigate aerosol effects on cloud properties without meteorological feedback.We also use the LES results to evaluate cloud properties from two reanalysis products, ERA5 and MERRA-2. Compared to LES, the ERA5 is able to capture the time evolution of LWP and total cloud coverage within the study domain during both CAO cases whileMERRA-2 underestimates them. © 2023 American Meteorological Society.6 month embargo; first published 14 March 2023This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]