243 research outputs found
Algorithms for Highly Symmetric Linear and Integer Programs
This paper deals with exploiting symmetry for solving linear and integer
programming problems. Basic properties of linear representations of finite
groups can be used to reduce symmetric linear programming to solving linear
programs of lower dimension. Combining this approach with knowledge of the
geometry of feasible integer solutions yields an algorithm for solving highly
symmetric integer linear programs which only takes time which is linear in the
number of constraints and quadratic in the dimension.Comment: 21 pages, 1 figure; some references and further comments added, title
slightly change
Optical Hall conductivity of systems with gapped spectral nodes
We calculate the optical Hall conductivity within the Kubo formalism for
systems with gapped spectral nodes, where the latter have a power-law
dispersion with exponent n. The optical conductivity is proportional to n and
there is a characteristic logarithmic singularity as the frequency approaches
the gap energy. The optical Hall conductivity is almost unaffected by thermal
fluctuations and disorder for n=1, whereas disorder has a stronger effect on
transport properties if n=2
Characterization of a Li-6 loaded liquid organic scintillator for fast neutron spectrometry and thermal neutron detection
The characterization of a liquid scintillator incorporating an aqueous
solution of enriched lithium chloride to produce a scintillator with 0.40% Li-6
is presented, including the performance of the scintillator in terms of its
optical properties and neutron response. The scintillator was incorporated into
a fast neutron spectrometer, and the light output spectra from 2.5 MeV, 14.1
MeV, and Cf-252 neutrons were measured using capture-gated coincidence
techniques. The spectrometer was operated without coincidence to perform
thermal neutron measurements. Possible improvements in spectrometer performance
are discussed.Comment: Submitted to Applied Radiation and Isotopes. 11 pages, 7 figures, 3
tables. Revision addresses reviewers' comment
From Social Data Mining to Forecasting Socio-Economic Crisis
Socio-economic data mining has a great potential in terms of gaining a better
understanding of problems that our economy and society are facing, such as
financial instability, shortages of resources, or conflicts. Without
large-scale data mining, progress in these areas seems hard or impossible.
Therefore, a suitable, distributed data mining infrastructure and research
centers should be built in Europe. It also appears appropriate to build a
network of Crisis Observatories. They can be imagined as laboratories devoted
to the gathering and processing of enormous volumes of data on both natural
systems such as the Earth and its ecosystem, as well as on human
techno-socio-economic systems, so as to gain early warnings of impending
events. Reality mining provides the chance to adapt more quickly and more
accurately to changing situations. Further opportunities arise by individually
customized services, which however should be provided in a privacy-respecting
way. This requires the development of novel ICT (such as a self- organizing
Web), but most likely new legal regulations and suitable institutions as well.
As long as such regulations are lacking on a world-wide scale, it is in the
public interest that scientists explore what can be done with the huge data
available. Big data do have the potential to change or even threaten democratic
societies. The same applies to sudden and large-scale failures of ICT systems.
Therefore, dealing with data must be done with a large degree of responsibility
and care. Self-interests of individuals, companies or institutions have limits,
where the public interest is affected, and public interest is not a sufficient
justification to violate human rights of individuals. Privacy is a high good,
as confidentiality is, and damaging it would have serious side effects for
society.Comment: 65 pages, 1 figure, Visioneer White Paper, see
http://www.visioneer.ethz.c
Novel insights on diagnosis, cause and treatment of diabetic neuropathy: Focus on painful diabetic neuropathy
Diabetic neuropathy is common, under or misdiagnosed, and causes substantial morbidity with increased mortality. Defining and developing sensitive diagnostic tests for diabetic neuropathy is not only key to implementing earlier interventions but also to ensure that the most appropriate endpoints are employed in clinical intervention trials. This is critical as many potentially effective therapies may never progress to the clinic, not due to a lack of therapeutic effect, but because the endpoints were not sufficiently sensitive or robust to identify benefit. Apart from improving glycaemic control, there is no licensed treatment for diabetic neuropathy, however, a number of pathogenetic pathways remain under active study. Painful diabetic neuropathy is a cause of considerable morbidity and whilst many pharmacological and nonpharmacological interventions are currently used, only two are approved by the US Food and Drug Administration. We address the important issue of the ‘placebo effect’ and also consider potential new pharmacological therapies as well as nonpharmacological interventions in the treatment of painful diabetic neuropathy
Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope
Nearby clusters and groups of galaxies are potentially bright sources of
high-energy gamma-ray emission resulting from the pair-annihilation of dark
matter particles. However, no significant gamma-ray emission has been detected
so far from clusters in the first 11 months of observations with the Fermi
Large Area Telescope. We interpret this non-detection in terms of constraints
on dark matter particle properties. In particular for leptonic annihilation
final states and particle masses greater than ~200 GeV, gamma-ray emission from
inverse Compton scattering of CMB photons is expected to dominate the dark
matter annihilation signal from clusters, and our gamma-ray limits exclude
large regions of the parameter space that would give a good fit to the recent
anomalous Pamela and Fermi-LAT electron-positron measurements. We also present
constraints on the annihilation of more standard dark matter candidates, such
as the lightest neutralino of supersymmetric models. The constraints are
particularly strong when including the fact that clusters are known to contain
substructure at least on galaxy scales, increasing the expected gamma-ray flux
by a factor of ~5 over a smooth-halo assumption. We also explore the effect of
uncertainties in cluster dark matter density profiles, finding a systematic
uncertainty in the constraints of roughly a factor of two, but similar overall
conclusions. In this work, we focus on deriving limits on dark matter models; a
more general consideration of the Fermi-LAT data on clusters and clusters as
gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo,
minor revisions to be consistent with accepted versio
Comparison and Implementation of a Rigid and a Flexible Multibody Planetary Gearbox Model
We propose algorithms for developing (1) a rigid (constrained) and (2) a flexible planetary gearbox model. The two methods are compared against each other and advantages/disadvantages of each method are discussed. The rigid model (1) has gear tooth reaction forces expressed by Lagrange multipliers. The flexible approach (2) is being compared with the gear tooth forces from the rigid approach, first without damping and second the influence of damping is examined. Variable stiffness as a function of base circle arc length is implemented in the flexible approach such that it handles the realistic switch between one and two gear teeth in mesh. The final results are from modelling the planetary gearbox in a 500 kW wind turbine which we also described in Jørgensen et.al (2013)
The Convex Geometry of Linear Inverse Problems
In applications throughout science and engineering one is often faced with
the challenge of solving an ill-posed inverse problem, where the number of
available measurements is smaller than the dimension of the model to be
estimated. However in many practical situations of interest, models are
constrained structurally so that they only have a few degrees of freedom
relative to their ambient dimension. This paper provides a general framework to
convert notions of simplicity into convex penalty functions, resulting in
convex optimization solutions to linear, underdetermined inverse problems. The
class of simple models considered are those formed as the sum of a few atoms
from some (possibly infinite) elementary atomic set; examples include
well-studied cases such as sparse vectors and low-rank matrices, as well as
several others including sums of a few permutations matrices, low-rank tensors,
orthogonal matrices, and atomic measures. The convex programming formulation is
based on minimizing the norm induced by the convex hull of the atomic set; this
norm is referred to as the atomic norm. The facial structure of the atomic norm
ball carries a number of favorable properties that are useful for recovering
simple models, and an analysis of the underlying convex geometry provides sharp
estimates of the number of generic measurements required for exact and robust
recovery of models from partial information. These estimates are based on
computing the Gaussian widths of tangent cones to the atomic norm ball. When
the atomic set has algebraic structure the resulting optimization problems can
be solved or approximated via semidefinite programming. The quality of these
approximations affects the number of measurements required for recovery. Thus
this work extends the catalog of simple models that can be recovered from
limited linear information via tractable convex programming
The TESS-Keck Survey. II. An Ultra-Short-Period Rocky Planet And Its Siblings Transiting The Galactic Thick-Disk Star TOI-561
We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultra-short-period planet. This bright (V = 10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P = 0.44 days, Rp = 1.45 ± 0.11 R⊕), c (TOI-561.01, P = 10.8 days, Rp = 2.90 ± 0.13 R⊕), and d (TOI-561.03, P = 16.3 days, Rp = 2.32 ± 0.16 R⊕). The star is chemically ([Fe/H] = −0.41 ± 0.05, [α/Fe] = +0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population, making TOI-561 one of the oldest (10 ± 3 Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2 ± 0.8 M⊕ and g cm−3, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0 ± 2.3 M⊕ and 1.6 ± 0.6 g cm−3, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies
- …