7 research outputs found

    Expression levels of the tetratricopeptide repeat protein gene ttc39b covary with carotenoid-based skin colour in cichlid fish

    Full text link
    Carotenoid pigments play a major role in animal body colouration, generating strong interest in the genes involved in the metabolic processes that lead from their dietary uptake to their storage in the integument. Here, we used RNA sequencing (RNA-Seq) to test for differentially expressed genes in a taxonomically replicated design using three pairs of related cichlid fish taxa from the genera Tropheus and Aulonocara. Within each pair, taxa differed in terms of red and yellow body colouration, and high‐performance liquid chromatography (HPLC) analyses of skin extracts revealed different carotenoid profiles and concentrations across the studied taxa. Five genes were differentially expressed in all three yellow–red skin contrasts (dhrsx, nlrc3, tcaf2, urah and ttc39b), but only the tetratricopeptide repeat protein-coding gene ttc39b, whose gene product is linked to mammalian lipid metabolism, was consistently expressed more highly in the red skin samples. The RNA-Seq results were confirmed by quantitative PCR. We propose ttc39b as a compelling candidate gene for variation in animal carotenoid colouration. Since differential expression of ttc39b was correlated with the presence/absence of yellow carotenoids in a previous study, we suggest that ttc39b is more likely associated with the concentration of total carotenoids than with the metabolic formation of red carotenoids

    Data from: Shifting barriers and phenotypic diversification by hybridisation

    Full text link
    The establishment of hybrid taxa relies on reproductive isolation from the parental forms, typically achieved by ecological differentiation. Here, we present an alternative mechanism, in which shifts in the strength and location of dispersal barriers facilitate diversification by hybridisation. Our case study concerns the highly diverse, stenotopic rock-dwelling cichlids of the African Great Lakes, many of which display geographic colour pattern variation. The littoral habitat of these fish has repeatedly been restructured in the course of ancient lake level fluctuations. Genetic data and an experimental cross support the hybrid origin of a distinct yellow-coloured variant of Tropheus moorii from ancient admixture between two allopatric, red and bluish variants. Deficient assortative mating preferences imply that reproductive isolation continues to be contingent on geographic separation. Linking paleolimnological data with the establishment of the hybrid variant, we sketch a selectively neutral diversification process governed solely by rearrangements of dispersal barriers

    Comparative transcriptomics reveals candidate carotenoid color genes in an East African cichlid fish

    Get PDF
    Background Carotenoids contribute significantly to animal body coloration, including the spectacular color pattern diversity among fishes. Fish, as other animals, derive carotenoids from their diet. Following uptake, transport and metabolic conversion, carotenoids allocated to body coloration are deposited in the chromatophore cells of the integument. The genes involved in these processes are largely unknown. Using RNA-Sequencing, we tested for differential gene expression between carotenoid-colored and white skin regions of a cichlid fish, Tropheus duboisi "Maswa", to identify genes associated with carotenoid-based integumentary coloration. To control for positional gene expression differences that were independent of the presence/absence of carotenoid coloration, we conducted the same analyses in a closely related population, in which both body regions are white. Results A larger number of genes (n = 50) showed higher expression in the yellow compared to the white skin tissue than vice versa (n = 9). Of particular interest was the elevated expression level of bco2a in the white skin samples, as the enzyme encoded by this gene catalyzes the cleavage of carotenoids into colorless derivatives. The set of genes with higher expression levels in the yellow region included genes involved in xanthophore formation (e.g., pax7 and sox10), intracellular pigment mobilization (e.g., tubb, vim, kif5b), as well as uptake (e.g., scarb1) and storage (e.g., plin6) of carotenoids, and metabolic conversion of lipids and retinoids (e.g., dgat2, pnpla2, akr1b1, dhrs). Triglyceride concentrations were similar in the yellow and white skin regions. Extracts of integumentary carotenoids contained zeaxanthin, lutein and beta-cryptoxanthin as well as unidentified carotenoid structures. Conclusion Our results suggest a role of carotenoid cleavage by Bco2 in fish integumentary coloration, analogous to previous findings in birds. The elevated expression of genes in carotenoid-rich skin regions with functions in retinol and lipid metabolism supports hypotheses concerning analogies and shared mechanisms between these metabolic pathways. Overlaps in the sets of differentially expressed genes (including dgat2, bscl2, faxdc2 and retsatl) between the present study and previous, comparable studies in other fish species provide useful hints to potential carotenoid color candidate genes.Peer reviewe

    AFLP data

    Full text link
    AFLP data for 269 individuals of Tropheus moorii (Cichlidae) from 12 populations. Sample IDs are composed of population name and sample number
    corecore