15 research outputs found

    Procedural Performance of Ultrathin, Biodegradable Polymer-Coated Stents Versus Durable Polymer-Coated Stents Based on Intracoronary Imaging

    Get PDF
    OBJECTIVE: Thinner stent struts might lead to a higher risk of recoil and subsequently a smaller minimal stent area (MSA), which is known to be the strongest predictor of stent failure. We compared procedural performance between an ultrathin-strut biodegradable-polymer sirolimus-eluting stent (BP-SES) and a durable-polymer zotarolimus-eluting stent (DP-ZES) using intracoronary imaging.METHODS: A consecutive cohort of patients underwent percutaneous coronary intervention (PCI) with either BP-SES or DP-ZES in a pseudorandomized fashion between July 2018 and October 2019. In the present subanalysis, we included cases in which post-PCI imaging with intravascular ultrasound (IVUS) or optical coherence tomography (OCT) was performed. The primary endpoint of the study was MSA. Secondary endpoints included percentage stent expansion and presence of residual edge disease, malapposition, tissue protrusion, submedial edge dissections, or edge hematoma.RESULTS: A total of 141 treated lesions (78 BP-SES and 63 DP-ZES) in 127 patients were analyzed. Median age was 69.3 years (interquartile range [IQR], 57.3-75.6) and 74.0% of patients were male. All baseline and procedural characteristics were comparable between both groups. Median MSA was 5.80 mm² (IQR, 4.40-7.24) for BP-SES and 6.35 mm² (IQR, 4.76-8.31) for DP-ZES (P=.15). No significant differences in stent expansion, residual edge disease and presence of malapposition, tissue protrusion, submedial edge dissections, or edge hematomas were found. Stent diameter and stent length were found to be independent predictors of MSA.CONCLUSIONS: No significant differences in MSA were found between lesions treated with BP-SES vs DP-ZES. BP-SES and DP-ZES were comparable in terms of procedural performance.</p

    Procedural Performance of Ultrathin, Biodegradable Polymer-Coated Stents Versus Durable Polymer-Coated Stents Based on Intracoronary Imaging

    Get PDF
    OBJECTIVE: Thinner stent struts might lead to a higher risk of recoil and subsequently a smaller minimal stent area (MSA), which is known to be the strongest predictor of stent failure. We compared procedural performance between an ultrathin-strut biodegradable-polymer sirolimus-eluting stent (BP-SES) and a durable-polymer zotarolimus-eluting stent (DP-ZES) using intracoronary imaging.METHODS: A consecutive cohort of patients underwent percutaneous coronary intervention (PCI) with either BP-SES or DP-ZES in a pseudorandomized fashion between July 2018 and October 2019. In the present subanalysis, we included cases in which post-PCI imaging with intravascular ultrasound (IVUS) or optical coherence tomography (OCT) was performed. The primary endpoint of the study was MSA. Secondary endpoints included percentage stent expansion and presence of residual edge disease, malapposition, tissue protrusion, submedial edge dissections, or edge hematoma.RESULTS: A total of 141 treated lesions (78 BP-SES and 63 DP-ZES) in 127 patients were analyzed. Median age was 69.3 years (interquartile range [IQR], 57.3-75.6) and 74.0% of patients were male. All baseline and procedural characteristics were comparable between both groups. Median MSA was 5.80 mm² (IQR, 4.40-7.24) for BP-SES and 6.35 mm² (IQR, 4.76-8.31) for DP-ZES (P=.15). No significant differences in stent expansion, residual edge disease and presence of malapposition, tissue protrusion, submedial edge dissections, or edge hematomas were found. Stent diameter and stent length were found to be independent predictors of MSA.CONCLUSIONS: No significant differences in MSA were found between lesions treated with BP-SES vs DP-ZES. BP-SES and DP-ZES were comparable in terms of procedural performance.</p

    Vessel fractional flow reserve-based non-culprit lesion reclassification in patients with ST-segment elevation myocardial infarction: Impact on treatment strategy and clinical outcome (FAST STEMI I study)

    Get PDF
    Background: Complete revascularization in patients with ST-segment elevation myocardial (STEMI) improves clinical outcome. Vessel fractional flow reserve (vFFR) has been validated as a non-invasive physiological technology to evaluate hemodynamic lesion significance without need for a dedicated pressure wire or hyperemic agent. This study aimed to assess discordance between vFFR reclassification and treatment strategy in intermediate non-culprit lesions of STEMI patients and to assess the clinical impact of this discordance. Methods: This was a single-center, retrospective cohort study. From January 2018 to December 2019, consecutive eligible STEMI patients were screened based on the presence of a non-culprit vessel with an intermediate lesion (30–80% angiographic stenosis) feasible for offline vFFR analysis. The primary outcome was the percentage of non-culprit vessels with discordance between vFFR and actual treatment strategy. The secondary outcome was two-year vessel-oriented composite endpoint (VOCE), a composite of vessel-related cardiovascular death, vessel-related myocardial infarction, and target vessel revascularization. Results: A total of 441 patients (598 non-culprit vessels) met the inclusion criteria. Median vFFR was 0.85 (0.73–0.91). Revascularization was performed in 34.4% of vessels. Discordance between vFFR and actual treatment strategy occurred in 126 (21.1%) vessels. Freedom from VOCE was higher for concordant vessels (97.5%) as compared to discordant vessels (90.6%)(p = 0.003), particularly due to higher adverse event rates in discordant vessels with a vFFR ≤0.80 but deferred revascularization. Conclusions: In STEMI patients with multivessel disease, discordance between vFFR reclassification and treatment strategy was observed in 21.1% of non-culprit vessels with an intermediate lesion and was associated with increased vessel-related adverse events
    corecore