16 research outputs found

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    Inverse KKT: Learning cost functions of manipulation tasks from demonstrations

    No full text
    Inverse Optimal Control (IOC) assumes that demonstrations are the solution to an optimal control problem with unknown underlying costs, and extracts parameters of these underlying costs. We propose the framework of Inverse KKT, which assumes that the demonstrations fulfill the Karush-Kuhn-Tucker conditions of an unknown underlying constrained optimization problem, and extracts parameters of this underlying problem. Using this we can exploit the latter to extract the relevant task spaces and parameters of a cost function for skills that involve contacts. For a typical linear parameterization of cost functions this reduces to a quadratic program, ensuring guaranteed and very efficient convergence, but we can deal also with arbitrary non-linear parameterizations of cost functions. We also present anonparametric variant of inverse KKT that represents the cost function as a functional in reproducing kernel Hilbert spaces. The aim of our approach is to push learning from demonstration to more complex manipulation scenarios that include the interaction with objects and therefore the realization of contacts/constraints within the motion. We demonstrate the approach on manipulation tasks such as sliding a box, closing a drawer and opening a door

    Large-scale cost function learning for path planning using deep inverse reinforcement learning

    No full text
    We present an approach for learning spatial traversability maps for driving in complex, urban environments based on an extensive dataset demonstrating the driving behaviour of human experts. The direct end-to-end mapping from raw input data to cost bypasses the effort of manually designing parts of the pipeline, exploits a large number of data samples, and can be framed additionally to refine handcrafted cost maps produced based on manual hand-engineered features. To achieve this, we introduce a maximum-entropy-based, non-linear inverse reinforcement learning (IRL) framework which exploits the capacity of fully convolutional neural networks (FCNs) to represent the cost model underlying driving behaviours. The application of a high-capacity, deep, parametric approach successfully scales to more complex environments and driving behaviours, while at deployment being run-time independent of training dataset size. After benchmarking against state-of-the-art IRL approaches, we focus on demonstrating scalability and performance on an ambitious dataset collected over the course of 1 year including more than 25,000 demonstration trajectories extracted from over 120 km of urban driving. We evaluate the resulting cost representations by showing the advantages over a carefully, manually designed cost map and furthermore demonstrate its robustness towards systematic errors by learning accurate representations even in the presence of calibration perturbations. Importantly, we demonstrate that a manually designed cost map can be refined to more accurately handle corner cases that are scarcely seen in the environment, such as stairs, slopes and underpasses, by further incorporating human priors into the training framework
    corecore