36 research outputs found

    Association between genetically predicted rheumatoid arthritis and alopecia areata: a two-sample Mendelian randomization study

    Get PDF
    BackgroundAlthough numerous observational studies have indicated a potential association between autoimmune diseases, such as rheumatoid arthritis (RA) and alopecia areata (AA), the research reports lack a clear causal relationship. In this study, our objective is to utilize the Mendelian randomization (MR) design to examine the potential causal association between RA and AA.MethodsTo investigate the causal relationship between RA and AA, we utilized large-scale gene aggregation data from genome-wide association studies (GWAS), including RA (n=58,284) and AA (n=361,822) based on previous observational studies. In our analysis, we mainly employed the inverse variance-weighted (IVW) method of the random effects model, supplemented by the weighted median (WM) method and the MR Egger method.ResultsThe findings from the IVW methods revealed a significant association between genetically predicted RA and an increased likelihood of AA, as evidenced by an odds ratio of 1.21 (95%CI = 1.11-1.32; P < 0.001. Both the WM method and MR-Egger regression consistently showed significant directional outcomes (Both P < 0.05), indicating a robust association between RA and AA. Additionally, both the funnel plot and the MR-Egger intercepts provided evidence of the absence of directional pleiotropy, suggesting that the observed association is not influenced by other common genetic factors.ConclusionsThe results of the study suggest a possible link between genetically predicted RA and AA. This finding highlights the importance for individuals diagnosed with RA to remain vigilant and aware of the potential development of AA. Regular monitoring and early detection can be crucial in managing and addressing this potential complication

    Smith-Purcell radiation from time grating

    Full text link
    Smith-Purcell radiation (SPR) occurs when an electron skims above a spatial grating, but the fixed momentum compensation from the static grating imposes limitations on the emission wavelength. It has been discovered that a temporally periodic system can provide energy compensation to generate light emissions in free space. Here, we introduce temporal SPR (t-SPR) emerging from a time grating and propose a generalized t-SPR dispersion equation to predict the relationship between radiation frequency, direction, electron velocity, modulation period, and harmonic orders. Compared to conventional SPR, t-SPR can: 1) Provide a versatile platform for manipulating SPR emission through temporal modulation (e.g., period, amplitude, wave shape). 2) Exhibit strong robustness to the electron-grating separation, alleviating the constraints associated with extreme electron near-field excitation. 3) Introduce additional energy channels through temporal modulation, enhancing and amplifying emission.Comment: 6 pages, 3 figure

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    A Lightweight Dense Connected Approach with Attention on Single Image Super-Resolution

    No full text
    In recent years, neural networks for single image super-resolution (SISR) have applied more profound and deeper network structures to extract extra image details, which brings difficulties in model training. To deal with deep model training problems, researchers utilize dense skip connections to promote the model’s feature representation ability by reusing deep features of different receptive fields. Benefiting from the dense connection block, SRDensenet has achieved excellent performance in SISR. Despite the fact that the dense connected structure can provide rich information, it will also introduce redundant and useless information. To tackle this problem, in this paper, we propose a Lightweight Dense Connected Approach with Attention for Single Image Super-Resolution (LDCASR), which employs the attention mechanism to extract useful information in channel dimension. Particularly, we propose the recursive dense group (RDG), consisting of Dense Attention Blocks (DABs), which can obtain more significant representations by extracting deep features with the aid of both dense connections and the attention module, making our whole network attach importance to learning more advanced feature information. Additionally, we introduce the group convolution in DABs, which can reduce the number of parameters to 0.6 M. Extensive experiments on benchmark datasets demonstrate the superiority of our proposed method over five chosen SISR methods

    Face Re-Lighting from a Single Image under Harsh Lighting Conditions

    No full text
    In this paper, we present a new method to change the illumination condition of a face image, with unknown face geometry and albedo information. This problem is particularly difficult when there is only one single image of the subject available and it was taken under a harsh lighting condition. Recent research demonstrates that the set of images of a convex Lambertian object obtained under a wide variety of lighting conditions can be approximated accurately by a low-dimensional linear subspace using spherical harmonic representation. However, the approximation error can be large under harsh lighting conditions [2] thus making it difficult to recover albedo information. In order to address this problem, we propose a subregion based framework that uses a Markov Random Field to model the statistical distribution and spatial coherence of face texture, which makes our approach not only robust to harsh lighting conditions, but insensitive to partial occlusions as well. The performance of our framework is demonstrated through various experimental results, including the improvement to the face recognition rate under harsh lighting conditions. 1

    Low Bit-Rate Video Streaming For Face-To-Face Teleconference

    No full text
    Face-to-face video teleconferencing is very important for real time communication. Current teleconferencing application uses standard video codec, such as MPEG1/2/4, for the compression of face video. It either requires high bandwidth for high quality video transmission, or the transmitted face video be blurred at low bitrate. In this paper, we present a system for real-time coding of face video at low bit-rate. There are two main contributions. First, we improve the technique of long term memory prediction by selecting frames into the database in an optimal way. A new frame is selected into the database only when it is significantly different from those frames which are already in the database. In this way, the database can cover a wider range of images. Second, we incorporate the prior knowledge about faces into the long term memory prediction framework. The prior knowledge includes: (1) facial motions are repetitive such that most of them can be reconstructed from multiple reference frames; and (2) different components of the face and the background could tolerate different level of error because of different perceptual importance. Experiments show that at similar PSNR the proposed system works much faster and achieves better visual quality than standard H.264/JVT codec

    Research on the Control Strategy of Leafy Vegetable Harvester Travel Speed Automatic Control System

    No full text
    This paper used the 4UM-120D electric leafy vegetable harvester as the research object and designed a travel speed automatic control system to maintain the travel speed within a set value of ±2% in order to improve the efficiency and quality of leafy vegetable harvester operations and decrease the work intensity of the operator. The harvester’s travel speed was automatically controlled by using the PID, adaptive fuzzy PID, and sliding mode control techniques after the mechanical and electrical equations for the travel drive motor (a DC brushless motor) were established in MATLAB. By simulating various working situations, the stability, accuracy, and speed of the automatic control system were compared and analyzed using the adjustment time, overshoot, steady-state transition time, and maximum deviation from the set speed as evaluation indicators. The test results revealed that when the current value of the leafy vegetable harvester travel speed deviated from the set value by more than 2%, the dynamic response performance and stability of the DC brushless motor travel drive system based on the sliding mode control strategy was significantly better than that of the PID and adaptive fuzzy PID control strategies, and its anti-disturbance was stronger, achieving the function of automatic control of the harvester travel speed. When the travel motor started with a constant load and the sliding mode control strategy’s parameters were the gain factors A = 1/70, c = 100, ε = 100, and k = 100, the travel drive system regulation time was 1.5 s, and the overshoot was 10%. When the harvester was operating smoothly and had leafy vegetable collection baskets loaded and unloaded, the steady-state transition time was 0.3 s. According to the actual engineering application experience, the specific technical state of the control strategy of the agricultural machinery travel speed automatic control system was: regulation time 2.5~3 s; overshoot amount 20~25%; and steady-state transition time 1.0~1.5 s, so the travel speed automatic control system of the electric leafy vegetable harvester in sliding mode was in line with the technical state requirements. The results of the field trials demonstrated the accuracy of the simulation test results. This study offered a method to lessen the work intensity of operators and increase the operating efficiency and quality of a leafy vegetable harvester

    PID-Based Design of Automatic Control System for a Travel Speed of the 4UM-120D Electric Leafy Vegetable Harvester

    No full text
    The study developed a PID-based automatic control system for travel speed based on the analysis of the entire machine structure of the 4UM-120D electric leafy vegetable harvester to enhance the operation quality of the harvester and lessen the workload of operators. Taking the system adjustment time during the process of starting and maintaining the travel speed of the harvester within ±2% of the set value as the main evaluation index, the Box–Behnken test method was applied based on the single-factor test, and the proportional coefficient Kp, the integral coefficient Ki and the initial value U of the travel motor drive voltage of the PID control algorithm were used as the test factors, and the PID-based 4UM-120D electric leafy vegetable harvester travel speed automatic control system operating parameters based on PID was studied in a three-factor, three-level experiment, and a multiple regression model of evaluation indexes on each factor was established to analyze the influence of each factor on system rapidity and to obtain the optimal operating parameters. The test findings demonstrated that the beginning value of the driving voltage of the travel motor U, the integration factor Ki, and the proportionality factor Kp had the largest to smallest influences on the system regulation time. When the initial value of the driving voltage of the travel motor was 1.81 V, the integration factor was 0.020, the proportionality factor was 0.127, the system regulation time was 2.14 s, and the relative error was 1.8% compared with the optimized value. The results of the study could provide a way to improve the operation quality of leafy vegetable harvesters and reduce the work intensity of operators

    Research on the Control Strategy of Leafy Vegetable Harvester Travel Speed Automatic Control System

    No full text
    This paper used the 4UM-120D electric leafy vegetable harvester as the research object and designed a travel speed automatic control system to maintain the travel speed within a set value of ±2% in order to improve the efficiency and quality of leafy vegetable harvester operations and decrease the work intensity of the operator. The harvester’s travel speed was automatically controlled by using the PID, adaptive fuzzy PID, and sliding mode control techniques after the mechanical and electrical equations for the travel drive motor (a DC brushless motor) were established in MATLAB. By simulating various working situations, the stability, accuracy, and speed of the automatic control system were compared and analyzed using the adjustment time, overshoot, steady-state transition time, and maximum deviation from the set speed as evaluation indicators. The test results revealed that when the current value of the leafy vegetable harvester travel speed deviated from the set value by more than 2%, the dynamic response performance and stability of the DC brushless motor travel drive system based on the sliding mode control strategy was significantly better than that of the PID and adaptive fuzzy PID control strategies, and its anti-disturbance was stronger, achieving the function of automatic control of the harvester travel speed. When the travel motor started with a constant load and the sliding mode control strategy’s parameters were the gain factors A = 1/70, c = 100, ε = 100, and k = 100, the travel drive system regulation time was 1.5 s, and the overshoot was 10%. When the harvester was operating smoothly and had leafy vegetable collection baskets loaded and unloaded, the steady-state transition time was 0.3 s. According to the actual engineering application experience, the specific technical state of the control strategy of the agricultural machinery travel speed automatic control system was: regulation time 2.5~3 s; overshoot amount 20~25%; and steady-state transition time 1.0~1.5 s, so the travel speed automatic control system of the electric leafy vegetable harvester in sliding mode was in line with the technical state requirements. The results of the field trials demonstrated the accuracy of the simulation test results. This study offered a method to lessen the work intensity of operators and increase the operating efficiency and quality of a leafy vegetable harvester
    corecore