356 research outputs found

    From Graphs to Keyed Quantum Hash Functions

    Get PDF
    We present two new constructions of quantum hash functions: the first based on expander graphs and the second based on extractor functions and estimate the amount of randomness that is needed to construct them. We also propose a keyed quantum hash function based on extractor function that can be used in quantum message authentication codes and assess its security in a limited attacker model

    Rapid mental computation system as a tool for algorithmic thinking of elementary school students development

    Get PDF
    In this paper, we describe the possibilities of using a rapid mental computation system in elementary education. The system consists of a number of readily memorized operations that allow one to perform arithmetic computations very quickly. These operations are actually simple algorithms which can develop or improve the algorithmic thinking of pupils. Using a rapid mental computation system allows forming the basis for the study of computer science in secondary school

    Combining Variational Autoencoders and Physical Bias for Improved Microscopy Data Analysis

    Full text link
    Electron and scanning probe microscopy produce vast amounts of data in the form of images or hyperspectral data, such as EELS or 4D STEM, that contain information on a wide range of structural, physical, and chemical properties of materials. To extract valuable insights from these data, it is crucial to identify physically separate regions in the data, such as phases, ferroic variants, and boundaries between them. In order to derive an easily interpretable feature analysis, combining with well-defined boundaries in a principled and unsupervised manner, here we present a physics augmented machine learning method which combines the capability of Variational Autoencoders to disentangle factors of variability within the data and the physics driven loss function that seeks to minimize the total length of the discontinuities in images corresponding to latent representations. Our method is applied to various materials, including NiO-LSMO, BiFeO3, and graphene. The results demonstrate the effectiveness of our approach in extracting meaningful information from large volumes of imaging data. The fully notebook containing implementation of the code and analysis workflow is available at https://github.com/arpanbiswas52/PaperNotebooksComment: 20 pages, 7 figures in main text, 4 figures in Supp Ma
    • …
    corecore