5 research outputs found

    Outbreak of gastroenteritis caused by Yersinia pestis in Afghanistan.

    Get PDF
    Plague, which is most often caused by the bite of Yersinia pestis-infected fleas, is a rapidly progressing, serious disease that can be fatal without prompt antibiotic treatment. In late December 2007, an outbreak of acute gastroenteritis occurred in Nimroz Province of southern Afghanistan. Of the 83 probable cases of illness, 17 died (case fatality 20·5%). Being a case was associated with consumption or handling of camel meat (adjusted odds ratio 4·4, 95% confidence interval 2·2-8·8, P<0·001). Molecular testing of patient clinical samples and of tissue from the camel using PCR/electrospray ionization-mass spectrometry revealed DNA signatures consistent with Yersinia pestis. Confirmatory testing using real-time PCR and immunological seroconversion of one of the patients confirmed that the outbreak was caused by plague, with a rare gastrointestinal presentation. The study highlights the challenges of identifying infectious agents in low-resource settings; it is the first reported occurrence of plague in Afghanistan

    Offshore floating PV–DC and AC yield analysis considering wave effects

    No full text
    The growing global energy demand increases the need for renewable energy sources. This increase requires land to be occupied, competing with other activities such as agriculture and residency. In such a situation, renewable energy sources expand to other environments like the ocean. However, this new scene poses some challenges, such as the effect of waves on photovoltaic (PV) performance. Consequently, this study aims to evaluate the power output of an Offshore Floating PV (OFPV) system located in the North Sea considering the effect of the waves. A 3D mechanical movement model, which has been validated with data from a real system, is developed for this purpose. A sensitivity analysis is conducted to determine how the size of fluctuations depends on the dimensions of the floater. The main outcome is that a heavy and wide floater aligned with the most common wind direction reduces angle variations. Results from DC power simulations show that sea fluctuations have a negative yet small influence on PV power production. Over the course of the year, these losses amount to just 0.1% of the annual energy yield. However, a hypothetical optimally-tilted PV system placed on water would still generate 14.6% more DC power output than the floating one. On the AC side, laboratory experiments show that these oscillations negatively affect the inverter efficiency during rough sea conditions by a decrease of over 2 percentage points compared to a still system.Photovoltaic Materials and Device
    corecore