24 research outputs found

    Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density.

    Get PDF
    Background: Chronic hypoxia in utero (CHU) is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury,yet the effects on normal cardiac mechanical performance are poorly understood. Methods: Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen)for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O) with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS) proteins were estimated by immunoblotting. Results: CHU significantly increased body mass (P < 0.001) compared with age-matched control rats but was without effect on relative cardiac mass. For incremental increases in left ventricular balloon volume, diastolic pressure was preserved. However, systolic pressure was significantly greater following CHU for balloon volume = 50 μl (P < 0.01) and up to 200 μl (P < 0.05). For higher balloon volumes systolic pressure was not significantly different from control. Developed pressures were correspondingly increased relative to controls for balloon volumes up to 250 μl (P < 0.05).Left ventricular free wall capillary density was significantly decreased in both epicardium (18%; P <0.05) and endocardium (11%; P < 0.05) despite preserved coronary flow. Western blot analysis revealed no change to the expression of SERCA2a or nNOS but immuno-detectable eNOS protein was significantly decreased (P < 0.001) in cardiac tissue following chronic hypoxia in utero. Conclusion: These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance

    Intravascular Ultrasound (IVUS): A Potential Arthroscopic Tool for Quantitative Assessment of Articular Cartilage

    Get PDF
    Conventional ultrasound examination of the articular cartilage performed externally on the body surface around the joint has limited accuracy due to the inadequacy in frequency used. In contrast to this, minimally invasive arthroscopy-based ultrasound with adequately high frequency may be a better alternative to assess the cartilage. Up to date, no special ultrasound transducer for imaging the cartilage in arthroscopic use has been designed. In this study, we introduced the intravascular ultrasound (IVUS) for this purpose. An IVUS system with a catheter-based probe (Ø ≈ 1mm) was used to measure the thickness and surface acoustical reflection of the bovine patellar articular cartilage in vitro before and after degeneration induced by enzyme treatments. Similar measurement was performed using another high frequency ultrasound system (Vevo) with a probe of much larger size and the results were compared between the two systems. The thickness measured using IVUS was highly correlated (r = 0.985, p < 0.001) with that obtained by Vevo. Thickness and surface reflection amplitude measured using IVUS on the enzymatically digested articular cartilage showed changes similar to those obtained by Vevo, which were expectedly consistent with previous investigations. IVUS can be potentially used for the quantitative assessment of articular cartilage, with its ready-to-use arthroscopic feature

    Specificity and heregulin regulation of Ebp1 (ErbB3 binding protein 1) mediated repression of androgen receptor signalling

    Get PDF
    Although ErbB receptors have been implicated in the progression of prostate cancer, little is known about proteins that may mediate their interactions with the androgen receptor (AR). Ebp1, a protein cloned via its association with the ErbB3 receptor, binds the AR and inhibits androgen-regulated transactivation of wild-type AR in COS cells. As the complement of coregulators in different cells are important for AR activity, we determined the effect of Ebp1 on AR function in prostate cancer cell lines. In addition, we examined the regulation of Ebp1 function by the ErbB3/4 ligand heregulin (HRG). In this study, we demonstrate, using several natural AR-regulated promoters, that Ebp1 repressed transcriptional activation of wild-type AR in prostate cancer cell lines. Downregulation of Ebp1 expression in LNCaP cells using siRNA resulted in activation of AR in the absence of androgen. Ebp1 associated with ErbB3 in LNCaP cells in the absence of HRG, but HRG induced the dissociation of Ebp1 from ErbB3. In contrast, HRG treatment enhanced both the association of Ebp1 with AR and also the ability of Ebp1 to repress AR transactivation. These studies suggest that Ebp1 is an AR corepressor whose biological activity can be regulated by the ErbB3 ligand, HRG
    corecore