159 research outputs found

    Non-isothermal model for the direct isotropic/smectic-A liquid crystalline transition

    Full text link
    An extension to a high-order model for the direct isotropic/smectic-A liquid crystalline phase transition was derived to take into account thermal effects including anisotropic thermal diffusion and latent heat of phase-ordering. Multi-scale multi-transport simulations of the non-isothermal model were compared to isothermal simulation, showing that the presented model extension corrects the standard Landau-de Gennes prediction from constant growth to diffusion-limited growth, under shallow quench/undercooling conditions. Non-isothermal simulations, where meta-stable nematic pre-ordering precedes smectic-A growth, were also conducted and novel non-monotonic phase-transformation kinetics observed.Comment: First revision: 20 pages, 7 figure

    Random field sampling for a simplified model of melt-blowing considering turbulent velocity fluctuations

    Full text link
    In melt-blowing very thin liquid fiber jets are spun due to high-velocity air streams. In literature there is a clear, unsolved discrepancy between the measured and computed jet attenuation. In this paper we will verify numerically that the turbulent velocity fluctuations causing a random aerodynamic drag on the fiber jets -- that has been neglected so far -- are the crucial effect to close this gap. For this purpose, we model the velocity fluctuations as vector Gaussian random fields on top of a k-epsilon turbulence description and develop an efficient sampling procedure. Taking advantage of the special covariance structure the effort of the sampling is linear in the discretization and makes the realization possible

    Mechanical aspects of fibre spinning process in molten polymers

    No full text

    Differential equations for velocity components in fibre spinning process

    No full text

    Nucleation Of Polymer Crystals with Internal Structure

    No full text
    • …
    corecore