228 research outputs found

    Qubit recycling and the path counting problem

    Full text link
    Recently, it was shown that the qudits used in circuits of a convolutional form (e.g., Matrix Product State sand Multi-scale Entanglement Renormalization Ansatz) can be reset unitarily \href{https://doi.org/10.1103/PhysRevA.103.042613}{[Phys. Rev. A 103, 042613 (2021)]}, even without measurement. We analyze the fidelity of this protocol for a family of quantum circuits that interpolates between such circuits and local quantum circuits, averaged over Haar-random gates. We establish a connection between this problem and a counting of directed paths on a graph, which is determined by the shape of the quantum circuit. This connection leads to an exact expression for the fidelity of the protocol for the entire family that interpolates between convolutional circuit and random quantum circuit. For convolutional circuits of constant window size, the rate of convergence to unit fidelity is shown to be q2q2+1\frac{q^2}{q^2+1}, independent of the window size, where qq is the local qudit dimension. Since most applications of convolutional circuits use constant-sized windows, our result suggests that the unitary reset protocol will likely work well in such a regime. We also derive two extra results in the convolutional limit, which may be of an independent interest. First, we derive exact expressions for the correlations between reset qudits and show that it decays exponentially in the distance. Second, we derive an expression for the the fidelity in the presence of noise, expressed in terms of the quantities that define the property of the channel, such as the entanglement fidelity.Comment: 15 pages, 5 figure

    Compressed sensing in photoacoustic tomography with in vivo experiments

    Get PDF
    The data acquisition speed in photoacoustic computed tomography (PACT) is limited by the laser repetition rate and the number of parallel ultrasound detecting channels. Reconstructing PACT image with a less number of measurements can effectively accelerate the data acquisition and reduce the system cost. Recently emerged Compressed Sensing (CS) theory enables us to reconstruct a compressible image with a small number of projections. This paper adopts the CS theory for reconstruction in PACT. The idea is implemented as a non-linear conjugate gradient descent algorithm and tested with phantom and in vivo experiments

    XVTP3D: Cross-view Trajectory Prediction Using Shared 3D Queries for Autonomous Driving

    Full text link
    Trajectory prediction with uncertainty is a critical and challenging task for autonomous driving. Nowadays, we can easily access sensor data represented in multiple views. However, cross-view consistency has not been evaluated by the existing models, which might lead to divergences between the multimodal predictions from different views. It is not practical and effective when the network does not comprehend the 3D scene, which could cause the downstream module in a dilemma. Instead, we predicts multimodal trajectories while maintaining cross-view consistency. We presented a cross-view trajectory prediction method using shared 3D Queries (XVTP3D). We employ a set of 3D queries shared across views to generate multi-goals that are cross-view consistent. We also proposed a random mask method and coarse-to-fine cross-attention to capture robust cross-view features. As far as we know, this is the first work that introduces the outstanding top-down paradigm in BEV detection field to a trajectory prediction problem. The results of experiments on two publicly available datasets show that XVTP3D achieved state-of-the-art performance with consistent cross-view predictions.Comment: 11 pages, 6 figures, accepted by IJCAI 2

    A Hierarchical Compositional Model for Face Representation and Sketching

    Full text link

    Automatic Search for Photoacoustic Marker Using Automated Transrectal Ultrasound

    Full text link
    Real-time transrectal ultrasound (TRUS) image guidance during robot-assisted laparoscopic radical prostatectomy has the potential to enhance surgery outcomes. Whether conventional or photoacoustic TRUS is used, the robotic system and the TRUS must be registered to each other. Accurate registration can be performed using photoacoustic (PA markers). However, this requires a manual search by an assistant [19]. This paper introduces the first automatic search for PA markers using a transrectal ultrasound robot. This effectively reduces the challenges associated with the da Vinci-TRUS registration. This paper investigated the performance of three search algorithms in simulation and experiment: Weighted Average (WA), Golden Section Search (GSS), and Ternary Search (TS). For validation, a surgical prostate scenario was mimicked and various ex vivo tissues were tested. As a result, the WA algorithm can achieve 0.53 degree average error after 9 data acquisitions, while the TS and GSS algorithm can achieve 0.29 degree and 0.48 degree average errors after 28 data acquisitions.Comment: 13 pages, 9 figure

    Quantification of optical absorption coefficients from acoustic spectra with photoacoustic tomography

    Get PDF
    Optical absorption is closely associated with many physiologically important parameters, such as the concentration and oxygen saturation of hemoglobin, and it can be used to quantify the concentrations of non-fluorescent molecules. We introduce a method to quantify the absolute optical absorption based upon the acoustic spectra of photoacoustic (PA) signals. This method is self-calibrating and thus insensitive to variations in optical fluence. Factors such as the detection system bandwidth and acoustic attenuation can affect the quantification but can be canceled by measuring the acoustic spectra at two optical wavelengths. This method has been implemented on various PA systems, including optical-resolution PA microscopy, acoustic-resolution PA microscopy, and reconstruction based PA array systems. We quantified the optical absorption coefficients of phantom samples at various wavelengths. We also quantified the oxygen saturation of hemoglobin in live mice

    Compressed sensing in photoacoustic tomography with in vivo experiments

    Get PDF
    The data acquisition speed in photoacoustic computed tomography (PACT) is limited by the laser repetition rate and the number of parallel ultrasound detecting channels. Reconstructing PACT image with a less number of measurements can effectively accelerate the data acquisition and reduce the system cost. Recently emerged Compressed Sensing (CS) theory enables us to reconstruct a compressible image with a small number of projections. This paper adopts the CS theory for reconstruction in PACT. The idea is implemented as a non-linear conjugate gradient descent algorithm and tested with phantom and in vivo experiments

    Comparing the prediction of prostate biopsy outcome using the Chinese Prostate Cancer Consortium (CPCC) Risk Calculator and the Asian adapted Rotterdam European Randomized Study of Screening for Prostate Cancer (ERSPC) Risk Calculator in Chinese and European men

    Get PDF
    Purpose: To externally validate the clinical utility of Chinese Prostate Cancer Consortium Risk Calculator (CPCC-RC) and Asian adapted Rotterdam European Randomized Study of Screening for Prostate Cancer Risk Calculator 3 (A-ERSPC-RC3) for prediction prostate cancer (PCa) and high-grade prostate cancer (HGPCa, Gleason Score ≥ 3 + 4) in both Chinese and European populations. Materials and methods: The Chinese clinical cohort, the European population-based screening cohort, and the European clinical cohort included 2,508, 3,616 and 617 prostate biopsy-naive men, respectively. The area under the receiver operating characteristic curve (AUC), calibration plot and decision curve analyses were applied in the analysis. Results: The CPCC-RC’s predictive ability for any PCa (AUC 0.77, 95% CI 0.75–0.79) was lower than the A-ERSPC-RC3 (AUC 0.79, 95% CI 0.77–0.81) in the European screening cohort (p < 0.001), but similar for HGPCa (p = 0.24). The CPCC-RC showed lower predictive accuracy for any PCa (AUC 0.65, 95% CI 0.61–0.70), but acceptable predictive accuracy for HGPCa (AUC 0.73, 95% CI 0.69–0.77) in the European clinical cohort. The A-ERSPC-RC3 showed an AUC of 0.74 (95% CI 0.72–0.76) in predicting any PCa, and a similar AUC of 0.74 (95% CI 0.72–0.76) in predicting HGPCa in Chinese cohort. In the Chinese population, decision curve analysis revealed a higher net benefit for CPCC-RC than A-ERSPC-RC3, while in the European screening and clinical cohorts, the net benefit was higher for A-ERSPC-RC3. Conclusions: The A-ERSPC-RC3 accurately predict the prostate biopsy in a contemporary Chinese multi-center clinical cohort. The CPCC-RC can predict accurately in a population-based screening cohort, but not in the European clinical cohort

    Arc-to-line frame registration method for ultrasound and photoacoustic image-guided intraoperative robot-assisted laparoscopic prostatectomy

    Full text link
    Purpose: To achieve effective robot-assisted laparoscopic prostatectomy, the integration of transrectal ultrasound (TRUS) imaging system which is the most widely used imaging modelity in prostate imaging is essential. However, manual manipulation of the ultrasound transducer during the procedure will significantly interfere with the surgery. Therefore, we propose an image co-registration algorithm based on a photoacoustic marker method, where the ultrasound / photoacoustic (US/PA) images can be registered to the endoscopic camera images to ultimately enable the TRUS transducer to automatically track the surgical instrument Methods: An optimization-based algorithm is proposed to co-register the images from the two different imaging modalities. The principles of light propagation and an uncertainty in PM detection were assumed in this algorithm to improve the stability and accuracy of the algorithm. The algorithm is validated using the previously developed US/PA image-guided system with a da Vinci surgical robot. Results: The target-registration-error (TRE) is measured to evaluate the proposed algorithm. In both simulation and experimental demonstration, the proposed algorithm achieved a sub-centimeter accuracy which is acceptable in practical clinics. The result is also comparable with our previous approach, and the proposed method can be implemented with a normal white light stereo camera and doesn't require highly accurate localization of the PM. Conclusion: The proposed frame registration algorithm enabled a simple yet efficient integration of commercial US/PA imaging system into laparoscopic surgical setting by leveraging the characteristic properties of acoustic wave propagation and laser excitation, contributing to automated US/PA image-guided surgical intervention applications.Comment: 12 pages, 9 figure
    • …
    corecore