54 research outputs found

    Kosterlitz-Thouless melting of magnetic order in the triangular quantum Ising material TmMgGaO4

    Get PDF
    Frustrated magnets hold the promise of material realizations of exotic phases of quantum matter, but direct comparisons of unbiased model calculations with experimental measurements remain very challenging. Here we design and implement a protocol of employing many-body computation methodologies for accurate model calculations-of both equilibrium and dynamical properties-for a frustrated rare-earth magnet TmMgGaO4 (TMGO), which explains the corresponding experimental findings. Our results confirm TMGO is an ideal realization of triangular-lattice Ising model with an intrinsic transverse field. The magnetic order of TMGO is predicted to melt through two successive Kosterlitz-Thouless (KT) phase transitions, with a floating KT phase in between. The dynamical spectra calculated suggest remnant images of a vanishing magnetic stripe order that represent vortex-antivortex pairs, resembling rotons in a superfluid helium film. TMGO therefore constitutes a rare quantum magnet for realizing KT physics, and we further propose experimental detection of its intriguing properties. TmMgGaO4 is one of a number of recently-synthesized quantum magnets that are proposed to realize important theoretical models. Here the authors demonstrate the agreement between detailed experimental measurements and state-of-the-art predictions based on the 2D transverse-field triangular lattice Ising model

    Associations of long-term visit-to-visit blood pressure variability with subclinical kidney damage and albuminuria in adulthood: a 30-year prospective cohort study

    Get PDF
    Background: Recent evidence indicates that long-term visit-to-visit blood pressure variability (BPV) may be associated with risk of cardiovascular disease. We, therefore, aimed to determine the potential associations of long-term BPV from childhood to middle age with subclinical kidney damage (SKD) and albuminuria in adulthood. Methods: Using data from the ongoing cohort of Hanzhong Adolescent Hypertension study, which recruited children and adolescents aged 6 to 18 years at baseline, we assessed BPV by SD and average real variability (ARV) for 30 years (6 visits). Presence of SKD was defined as estimated glomerular filtration rate between 30 and 60 mL/min per 1.73 m2 or elevated urinary albumin-to creatinine ratio at least 30 mg/g. Albuminuria was defined as urinary albumin-to creatinine ratio ≥30 mg/g. Results: During 30 years of follow-up, of the 1771 participants, 204 SKD events occurred. After adjustment for demographic, clinical characteristics, and mean BP during 30 years, higher SDSBP, ARVSBP, SDDBP, ARVDBP, SDMAP, ARVMAP, and ARVPP were significantly associated with higher risk of SKD. When we used cumulative exposure to BP from childhood to adulthood instead of mean BP as adjustment factors, results were similar. In addition, greater long-term BPV was also associated with the risk of albuminuria. Long-term BPV from childhood to middle age was associated with higher risk of SKD and albuminuria in adulthood, independent of mean BP or cumulative exposure to BP during follow-up. Conclusions: Identifying long-term BPV from early age may assist in predicting kidney disease and cardiovascular disease in later life

    Synergistic Effect of Repolarization of M2 to M1 Macrophages Induced by Iron Oxide Nanoparticles Combined with Lactate Oxidase

    No full text
    Metabolic reprogramming of tumors with the accompanying reprogramming of glucose metabolism and production of lactate accumulation is required for the subsequent development of tumors. Recent evidence has indicated that tumor-secreted lactate can promote an oncolytic immune microenvironment within the tumor. Furthermore, tumor-secreted lactate directly induces polarization of tumor-supportive M2 macrophages. However, oxidized tumor-secreted lactate in the tumor microenvironment can be exploited. Iron oxide nanoparticles have shown promising anticancer potential by activating tumor-suppressing macrophages. Furthermore, lactate oxidase (LOX) generally oxidizes tumor-secreted lactate and subsequently converts to pyruvate. Particularly, the ratio of M2 macrophages to M1 macrophages corresponds with tumor growth. In this study, we present iron oxide nanoparticles with carboxylic acid combined with LOX that enhance antitumor efficacy as a synergistic effect on the repolarization of tumor-supportive M2 macrophages to tumor-suppressive M1 macrophages in a tumor microenvironment. After M2 macrophages treated with iron oxide nanoparticles were combined with LOX, the ratio of M1 macrophages was significantly greater than iron oxide nanoparticles alone or with LOX alone. It is concluded that the inhibition of cancer cell proliferation by ratio of M1 macrophages was observed. This study suggests that the iron oxide nanoparticles combined with LOX could be potentially used for potentiating immune checkpoint inhibitor therapies for cancer treatment

    Postfault LVRT Performance Enhancement of DFIG Using a Stage-Controlled SSFCL-RSDR

    No full text

    Heat stress-induced autophagy promotes lactate secretion in cultured immature boar Sertoli cells by inhibiting apoptosis and driving SLC2A3, LDHA, and SLC16A1 expression

    No full text
    This study aimed to determine whether heat stress (HS) could induce autophagy in immature boar Sertoli cells (SCs) and test whether HS-induced autophagy could regulate lactate secretion by SCs. Cultured immature boar SCs were incubated at 43 degrees C for 30 minutes. The ratio of LOB-II to LOB-I and the mRNA transcript levels of LOB showed time-dependent changes 0 to 48 hours after HS treatment, which peaked at 24 hours and increased by 30.25% or 260%, respectively, compared with control SCs. The density of autolysosomes, which were labeled with a red dye, was higher at 24 hours than at any other time point. However, the apoptosis rate, cleavage of caspase-3, and mRNA transcript levels of CASP3 (caspase-3) at 24 hours after HS were lower than at 12 hours. Furthermore, lactate secretion, and mRNA transcript levels of SLC2A3 (GLUTS), LDHA (LDHA), and SLC16A1 (MCT1) also showed time-dependent changes with a peak at 24 hours. In addition, LY294002 (20 mu M) significantly inhibited changes in ratio of LOB-II to LOB-I, LOB mRNA transcript levels, and autolysosome formation. It also resulted in significantly less lactate secretion and increased apoptosis but showed no effect on B-cell lymphoma-2 expression in heat-treated immature SCs. These findings indicated that HS-induced autophagy regulates lactate secretion by inhibiting apoptosis and increasing mRNA transcript and protein levels of SLC2A3, LDHA, and SLC16A1, which suggests that HS-induced autophagy may enhance lactate secretion by SCsThis work was supported by grants from National Natural Science Foundation of China (No. 31672624), the Major State Basic Research Development Program (grant number 2014CB138502), the Fundamental Research Funds for the Central Universities (grant number XDJK2014D030), and the Chongqing Postgraduate Innovation Program (grant number CYB14056)

    Design, Synthesis and Anti-Tobacco Mosaic Virus (TMV) Activity of 5-Chloro-N-(4-cyano-1-aryl-1H-pyrazol-5-yl)-1-aryl-3-methyl-1H-pyrazole-4-carboxamide Derivatives

    No full text
    A series of novel pyrazole amide derivatives 3a–3p which take TMV PC protein as the target has been designed and synthesized by the reactions of 5-chloro-1-aryl-3-methyl-1H-pyrazole-4-carboxylic acids with 5-amino-1-aryl-1H-pyrazole-4-carbonitriles. All the compounds were characterized by 1H-NMR, mass spectroscopy and elemental analysis. Preliminary bioassays indicated that all the compounds acted against the tobacco mosaic virus (TMV) with different in vivo and in vitro modes at 500 μg/mL and were found to possess promising activity. Especially, compound 3p showed the most potent biological activity against tobacco mosaic virus (TMV) compared to ningnanmycin, and a molecular docking study was performed and the binding model revealed that the pyrazole amide moiety was tightly embedded in the binding sites of TMV PC (PDB code: 2OM3)
    • …
    corecore