5,640 research outputs found

    Multiphase transport model for heavy ion collisions at RHIC

    Get PDF
    Using a multiphase transport model (AMPT) with both partonic and hadronic interactions, we study the multiplicity and transverse momentum distributions of charged particles such as pions, kaons and protons in central Au+Au collisions at RHIC energies. Effects due to nuclear shadowing and jet quenching on these observables are also studied. We further show preliminary results on the production of multistrange baryons from the strangeness-exchange reactions during the hadronic stage of heavy ion collisions.Comment: 4 pages, 4 figures, espcrc1.sty included, presented at 15th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (QM2001), Long Island, New York, January 200

    Mechanics of Tunable Helices and Geometric Frustration in Biomimetic Seashells

    Full text link
    Helical structures are ubiquitous in nature and engineering, ranging from DNA molecules to plant tendrils, from sea snail shells to nanoribbons. While the helical shapes in natural and engineered systems often exhibit nearly uniform radius and pitch, helical shell structures with changing radius and pitch, such as seashells and some plant tendrils, adds to the variety of this family of aesthetic beauty. Here we develop a comprehensive theoretical framework for tunable helical morphologies, and report the first biomimetic seashell-like structure resulting from mechanics of geometric frustration. In previous studies, the total potential energy is everywhere minimized when the system achieves equilibrium. In this work, however, the local energy minimization cannot be realized because of the geometric incompatibility, and hence the whole system deforms into a shape with a global energy minimum whereby the energy in each segment may not necessarily be locally optimized. This novel approach can be applied to develop materials and devices of tunable geometries with a range of applications in nano/biotechnology

    Ceria–terbia solid solution nanobelts with high catalytic activities for CO oxidation

    Get PDF
    Ceria–terbia solid solution nanobelts were prepared by an electrochemical route and tested as catalysts of high activity for CO oxidation

    Phi meson production in relativistic heavy ion collisions

    Get PDF
    Within a multiphase transport model we study phi meson production in relativistic heavy ion collisions from both superposition of initial multiple proton-proton interactions and the secondary collisions in the produced hadronic matter. The yield of phi mesons is then reconstructed from their decaying product of either the kaon-antikaon pairs or the dimuon pairs. Since the kaon-antikaon pairs at midrapidity with low transverse momenta are predominantly rescattered or absorbed in the hadronic medium, they can not be used to reconstruct the phi meson and lead thus to a smaller reconstructed phi meson yield than that reconstructed from the dimuon channel. With in-medium mass modifications of kaons and phi mesons, the phi yield from dimuons is further enhanced compared to that from the kaon-antikaon pairs. The model result is compared with the experimental data at the CERN/SPS and RHIC energies and its implications to quark-gluon plasma formation are discussed.Comment: Revised version, to appear in Nucl. Phys.

    A Multi-Phase Transport Model for Relativistic Heavy Ion Collisions

    Get PDF
    We describe in detail how the different components of a multi-phase transport (AMPT) model, that uses the Heavy Ion Jet Interaction Generator (HIJING) for generating the initial conditions, Zhang's Parton Cascade (ZPC) for modeling partonic scatterings, the Lund string fragmentation model or a quark coalescence model for hadronization, and A Relativistic Transport (ART) model for treating hadronic scatterings, are improved and combined to give a coherent description of the dynamics of relativistic heavy ion collisions. We also explain the way parameters in the model are determined, and discuss the sensitivity of predicted results to physical input in the model. Comparisons of these results to experimental data, mainly from heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC), are then made in order to extract information on the properties of the hot dense matter formed in these collisions.Comment: 33 pages, 38 figures, revtex. Added 9 figures, version published in Phys. Rev. C. The full source code of the AMPT model in the Fortran 77 language and instructions for users are available from the EPAPS ftp site (ftp://ftp.aip.org/epaps/phys_rev_c/E-PRVCAN-72-781512/) and the OSCAR website (http://www-cunuke.phys.columbia.edu/OSCAR/
    corecore