1,412 research outputs found

    Band structure renormalization and weak pseudogap behavior in Na_{0.33}CoO_2: Fluctuation exchange study based on a single band model

    Get PDF
    Based on a single band Hubbard model and the fluctuation exchange approximation, the effective mass and the energy band renormalization in Na0.33_{0.33}CoO2_2 is elaborated. The renormalization is observed to exhibit certain kind of anisotropy, which agrees qualitatively with the angle-resolved photoemission spectroscopy (ARPES) measurements. Moreover, the spectral function and density of states (DOS) in the normal state are calculated, with a weak pseudogap behavior being seen, which is explained as a result of the strong Coulomb correlations. Our results suggest that the large Fermi surface (FS) associated with the a1ga_{1g} band plays likely a central role in the charge dynamics.Comment: 5 pages, 5 figure

    Orbital-transverse density-wave instabilities in iron-based superconductors

    Full text link
    Besides the conventional spin-density-wave (SDW) state, a new kind of orbital-transverse density-wave (OTDW) state is shown to exist generally in multi-orbital systems. We demonstrate that the orbital character of Fermi surface nesting plays an important role in density responses. The relationship between antiferromagnetism and structural phase transition in LaFeAsO (1111) and BaFe2_2As2_2 (122) compounds of iron-based superconductors may be understood in terms of the interplay between the SDW and OTDW with a five-orbital Hamiltonian. We propose that the essential difference between 1111 and 122 compounds is crucially determined by the presence of the two-dimensional dxyd_{xy}-like Fermi surface around (0,0) being only in 1111 parent compounds.Comment: several parts were rewritten for clarity. 6 pages, 3 figures, 1 tabl

    Possible singlet and triplet superconductivity on honeycomb lattice

    Full text link
    We study the possible superconducting pairing symmetry mediated by spin and charge fluctuations on the honeycomb lattice using the extended Hubbard model and the random-phase-approximation method. From 2%2\% to 20%20\% doping levels, a spin-singlet dx2−y2+idxyd_{x^{2}-y^{2}}+id_{xy}-wave is shown to be the leading superconducting pairing symmetry when only the on-site Coulomb interaction UU is considered, with the gap function being a mixture of the nearest-neighbor and next-nearest-neighbor pairings. When the offset of the energy level between the two sublattices exceeds a critical value, the most favorable pairing is a spin-triplet ff-wave which is mainly composed of the next-nearest-neighbor pairing. We show that the next-nearest-neighbor Coulomb interaction VV is also in favor of the spin-triplet ff-wave pairing.Comment: 6 pages, 4 figure
    • …
    corecore