2 research outputs found

    Detection and Evaluation Technologies for Using Existing Salt Caverns to Build Energy Storage

    No full text
    Underground salt caverns are widely used in large-scale energy storage, such as natural gas, compressed air, oil, and hydrogen. In order to quickly build large-scale natural gas reserves, an unusual building method was established. The method involves using the existing salt caverns left over from solution mining of salt to build energy storages. In 2007, it was first applied to Jintan Natural Gas Storage of China. Based on this successful project, several existing salt caverns were screened to build energy storages in China. Engineering experience indicates that the key to successful reusing is how to select the most suitable of the numerous available caverns and confirm it. This paper summarizes and reviews relevant theories and testing methods, including: (1) the primary selection principle for using existing salt caverns to build energy storage, (2) the testing method and evaluation theory of tightness of the existing salt cavern, and (3) the typical project case of using the existing salt caverns to build energy storage in China. From the practical application results, the selection principle proposed in this paper can quickly screen available existing salt caverns with energy storage potential, and the brine injection method can effectively evaluate their tightness. It provides a technical roadmap for the subsequent implementation of existing salt cavern utilization projects on a large scale

    Study of Impact of Sediment on the Stability of Salt Cavern Underground Gas Storage

    No full text
    The utilization of sediment voids for natural gas storage represents the future direction of salt cavern underground gas storage (UGS) in China. In this study, we first analyzed the way in which the sediment interacts with the salt caverns and the equilibrium state of the process. Subsequently, a novel approach employing the Discrete Element Method (DEM) for simulating sediment-filled salt cavern UGS was introduced, successfully modeling the operational process of sediment-filled salt cavern UGS. Moreover, deformation, plastic zone behavior, effective volume shrinkage rate, equivalent strain, and safety factor were employed to assess the impact of sediment on salt cavern stability. The findings indicate a positive influence of sediment on salt cavern stability, particularly in regions directly contacting the sediment. Deformation and effective volume shrinkage of the cavern were effectively mitigated, significantly improving the stress state of rock salt. This effect is more pronounced at lower internal gas pressures. In summary, sediment enhances the stability of salt caverns, providing a long-term and stable environment for natural gas storage within sediment voids
    corecore