9 research outputs found

    Modulation parameter estimation of LFM interference for direct sequence spread spectrum communication system in alpha-stable noise

    Get PDF
    The linear frequency modulation (LFM) interference is one of the typical broadband interferences in direct sequence spread spectrum (DSSS) communication system. In this article, a novel modulation parameter estimation method of LFM interference is proposed for the DSSS communication system in alpha-stable noise. To accurately estimate the modulation parameters, the alpha-stable noise should be eliminated first. Thus, we formulate a new generalized extended linear chirplet transform to suppress the alpha-stable noise, for a robust time-frequency, transformation of LFM interference is realized. Then, using the Radon transform, the maximum value after transformation and the chirp rate according to the angle related to the maximum value are estimated. In addition, a generalized Fourier transform is introduced to estimate the initial frequency of the LFM interference. For the performance analysis, the Cramér-Rao lower bounds of the estimated chirp rate and the initial frequency of the LFM interference in the presence of alpha-stable noise are derived. Moreover, the asymptotic properties of the modulation parameter estimator are analyzed. Simulation results demonstrate that the performance of the proposed parameter estimation method significantly outperforms existing methods, especially in a low SNR regime

    Visual analysis of discrimination in machine learning

    Get PDF
    The growing use of automated decision-making in critical applications, such as crime prediction and college admission, has raised questions about fairness in machine learning. How can we decide whether different treatments are reasonable or discriminatory? In this paper, we investigate discrimination in machine learning from a visual analytics perspective and propose an interactive visualization tool, DiscriLens, to support a more comprehensive analysis. To reveal detailed information on algorithmic discrimination, DiscriLens identifies a collection of potentially discriminatory itemsets based on causal modeling and classification rules mining. By combining an extended Euler diagram with a matrix-based visualization, we develop a novel set visualization to facilitate the exploration and interpretation of discriminatory itemsets. A user study shows that users can interpret the visually encoded information in DiscriLens quickly and accurately. Use cases demonstrate that DiscriLens provides informative guidance in understanding and reducing algorithmic discrimination

    VCoach: A Customizable Visualization and Analysis System for Video-based Running Coaching

    Full text link
    Videos are accessible media for analyzing sports postures and providing feedback to athletes. Existing video-based coaching systems often present feedback on the correctness of poses by augmenting videos with visual markers either manually by a coach or automatically by computing key parameters from poses. However, previewing and augmenting videos limit the analysis and visualization of human poses due to the fixed viewpoints, which confine the observation of captured human movements and cause ambiguity in the augmented feedback. Besides, existing sport-specific systems with embedded bespoke pose attributes can hardly generalize to new attributes; directly overlaying two poses might not clearly visualize the key differences that viewers would like to pursue. To address these issues, we analyze and visualize human pose data with customizable viewpoints and attributes in the context of common biomechanics of running poses, such as joint angles and step distances. Based on existing literature and a formative study, we have designed and implemented a system, VCoach, to provide feedback on running poses for amateurs. VCoach provides automatic low-level comparisons of the running poses between a novice and an expert, and visualizes the pose differences as part-based 3D animations on a human model. Meanwhile, it retains the users' controllability and customizability in high-level functionalities, such as navigating the viewpoint for previewing feedback and defining their own pose attributes through our interface. We conduct a user study to verify our design components and conduct expert interviews to evaluate the usefulness of the system

    Bistatic Forward-Looking SAR Moving Target Detection Method Based on Joint Clutter Cancellation in Echo-Image Domain with Three Receiving Channels

    Full text link
    In bistatic forward-looking synthetic aperture radar (BFSAR) ground moving target detection (GMTD), the suppression of the strong and heterogeneous ground clutter is one of the most crucial and challenging issues. Due to the bistatic forward-looking mode and long observation time, Doppler ambiguity, range and Doppler cells migration and non-stationary characteristics will exist in clutter receives, which leads to severe performance degradation of the traditional method. Hence, this paper proposes a GMTD method based on joint clutter cancellation in echo-image domain for BFSAR to achieve effective GMTD in heterogeneous BFSAR clutter. First, the pre-filtering and keystone transform are applied to suppress Doppler ambiguity and correct range cell migration, respectively. Then, time-division space-time adaptive clutter cancellation is adopted to suppress clutter at the first time in the echo domain, which can eliminate the effect of the migration of Doppler cells. However, its performance will be severely degraded due to the strong non-stationary characteristic of BFSAR clutter. Finally, adaptive displaced phase center antenna is exploited to suppress the residual non-stationary BFSAR clutter in image domain. Experimental results have shown that the strong non-stationary clutter of BFSAR has been sufficiently suppressed by the proposed method and the SCNR provided is enough to detect a moving target well

    StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams

    Full text link

    Functional vulnerability of liver macrophages to capsules defines virulence of blood-borne bacteria

    Full text link
    Many encapsulated bacteria use capsules to cause invasive diseases. However, it remains largely unknown how the capsules enhance bacterial virulence under in vivo infection conditions. Here we show that the capsules primarily target the liver to enhance bacterial survival at the onset of blood-borne infections. In a mouse sepsis model, the capsules enabled human pathogens Streptococcus pneumoniae and Escherichia coli to circumvent the recognition of liver-resident macrophage Kupffer cells (KCs) in a capsular serotype-dependent manner. In contrast to effective capture of acapsular bacteria by KCs, the encapsulated bacteria are partially (low-virulence types) or completely (high-virulence types) "untouchable" for KCs. We finally identified the asialoglycoprotein receptor (ASGR) as the first known capsule receptor on KCs to recognize the low-virulence serotype-7F and -14 pneumococcal capsules. Our data identify the molecular interplay between the capsules and KCs as a master controller of the fate and virulence of encapsulated bacteria, and suggest that the interplay is targetable for therapeutic control of septic infections
    corecore